Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8597
DC FieldValueLanguage
dc.contributor.authorallVallianatos, F.; Technological Educational Institution of Crete, Laboratory of Geophysics and Seismology, Chania, Crete, Greeceen
dc.contributor.authorallNardi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallCarluccio, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallChiappini, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2013-04-04T12:43:36Zen
dc.date.available2013-04-04T12:43:36Zen
dc.date.issued2012-06en
dc.identifier.urihttp://hdl.handle.net/2122/8597en
dc.description.abstractThe application of mechanical stress on a rock sample can induce electromagnetic emissions. Such emissions can be detected experimentally and in principle could be used as precursors of the upcoming failure. Using experimental observations of stress-induced electromagnetic emissions (SIEME), we apply the concepts of non-extensive statistical physics (NESP) to the time intervals between consecutive SIEME. The application of NESP is appropriate to systems such as fracture-induced effects, where non-linearity, long-range interactions and scaling are important. We find that the SIEME energy release distribution and the inter-event time distribution reflect a sub-extensive system with thermodynamic q-values of the order of qE = 1.67 and qτ ≈ 1.7, respectively.en
dc.language.isoEnglishen
dc.publisher.nameVersitaen
dc.relation.ispartofActa Geophysicaen
dc.relation.ispartofseries3 / 60 (2012)en
dc.subjectelectromagnetic emissionsen
dc.subjectnon-extensive statistical physicsen
dc.subjectrocksen
dc.titleExperimental Evidence of a Non-Extensive Statistical Physics Behavior of Electromagnetic Signals Emitted from Rocks Under Stress up to Fracture. Preliminary Resultsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber894-909en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocksen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoringen
dc.identifier.doi10.2478/s11600-012-0030-zen
dc.relation.referencesAbe, S., and N. Suzuki (2003), Law for the distance between successive earthquakes, J. Geophys. Res. 108, B2, 2113, DOI: 10.1029/2002JB002220. Abe, S., and N. Suzuki (2005), Scale-free statistics of time interval between successive earthquakes, Physica A 350, 2-4, 588-596, DOI: 10.1016/j.physa. 2004.10.040. Anastasiadis, C., D. Triantis, I. Stavrakas, F. Vallianatos (2004), Pressure Stimulated Currents (PSC) in marble samples, Ann. Geophys. 47, 1, 21-28. Benson, P.M., B.D. Thompson, P.G. Meredith, S. Vinciguerra, and R.P. Young (2007), Imaging slow failure in triaxially deformed Etna basalt using 3D acoustic-emission location and X-ray computed tomography, Geophys. Res. Lett. 34, 3, L03303, DOI: 10.1029/2006GL028721. Benson, P.M., S. Vinciguerra, P.G. Meredith, and R.P. Young (2008), Laboratory simulation of volcano seismicity, Science 322, 5899, 249-252, DOI: 10.1126/science.1161927. Burridge, R., and L. Knopoff (1967), Model and theoretical seismicity, Bull. Seismol. Soc. Am. 57, 3, 341-371. Carlson, J.M., J.S. Langer, B.E. Shaw, and C. Tang (1991), Intrinsic properties of a Burridge–Knopoff model of an earthquake fault, Phys. Rev. A 44, 2, 884- 897, DOI: 10.1103/PhysRevA.44.884. Chakrabarti, B.K., and L.G. Benguigui (1997), Statistical Physics of Fracture and Breakdown in Disordered Systems, Oxford University Press, Oxford, 161 pp. Enomoto, Y., and H. Hashimoto (1990), Emission of charged particles from indentation fracture of rocks, Nature 346, 641-643, DOI: 10.1038/346641a0. Frid, V., A. Rabinovitch, and D. Bahat (2003), Fracture induced electromagnetic radiation, J. Phys. D: Appl. Phys. 36, 13, 1620-1628, DOI: 10.1088/0022- 3727/36/13/330. Frid, V., A. Rabinovitch, and D. Bahat (2006), Crack velocity measurement by induced electromagnetic radiation, Phys. Lett. A 356, 2, 160-163, DOI: 10.1016/j.physleta.2006.03.024. Frid, V., J. Goldbaum, A. Rabinovitch, and D. Bahat (2009), Electric polarization induced by mechanical loading of Solnhofen limestone, Phil. Mag. Lett. 89, 7, 453-463, DOI: 10.1080/09500830903022636. Frid, V., J. Goldbaum, A. Rabinovitch, and D. Bahat (2011), Time-dependent Benioff strain release diagrams, Phil. Mag. 91, 12, 1693-1704, DOI: 10.1080/ 14786435.2010.544684. Hasumi, T. (2007), Interoccurrence time statistics in the two-dimensional Burridge– Knopoff earthquake model, Phys. Rev. E 76, 2, 026117, DOI: 10.1103/ PhysRevE.76.026117. Hayakawa, M. (ed.) (1999), Electromagnetic Phenomena Related to Earthquake Prediction, TERRAPUB, Tokyo. Hayakawa, M., and Y. Fujinawa (eds.) (1994), Electromagnetic Phenomena Related to Earthquake Prediction, TERRAPUB, Tokyo. Hayakawa, M., and O.A. Molchanov (eds.) (2002), Seismo Electromagnetics: Lithosphere- Atmosphere-Ionosphere Coupling, TERRAPUB, Tokyo, 478 pp. Herrmann, H.J., and S. Roux (1990), Statistical Models for the Fracture of Disordered Media, North-Holland, Amsterdam. Nardi, A. (2001), Emissioni elettromagnetiche in rocce sottoposte a sollecitazione meccanica. Un possibile precursore sismico?, Master thesis, University of Rome “La Sapienza” (in Italian). Nardi, A., (2005), Emissioni elettromagnetiche naturali come precursori di fenomeni sismici, Ph.D. thesis, University of Rome “La Sapienza” (in Italian). Nardi, A., and M. Caputo (2006), A perspective electric earthquake precursor observed in the Apennines, Boll. Geofis. Teor. Appl. 47, 1-2, 3-12. Nardi, A., and M. Caputo (2009), Monitoring the mechanical stress of rocks through the electromagnetic emission produced by fracturing, Int. J. Rock Mech. Min. Sci. 46, 5, 940-945, DOI: 10.1016/j.ijrmms.2009.01.005. Nardi, A., M. Caputo, and C. Chiarabba (2007), Possible electromagnetic earthquake precursors in two years of ELF-VLF monitoring in the atmosphere, Boll. Geofis. Teor. Appl. 48, 2, 205-212. O’Keefe, S.G., and D.V. Thiel (1995), A mechanism for the production of electromagnetic radiation during fracture of brittle materials, Phys. Earth Planet. In. 89, 1-2, 127-135, DOI: 10.1016/0031-9201(94)02994-M. Rundle, J.B., D.L. Turcotte, and W. Klein (eds.) (2000), Geocomplexity and the Physics of Earthquakes, American Geophysical Union, Washington, 284 pp. Slifkin, L. (1993), Seismic electric signals from displacement of charged dislocations, Tectonophysics 224, 1-3, 149-152, DOI: 10.1016/0040-1951(93) 90066-S. Stavrakas, I., C. Anastasiadis, D. Triantis, and F. Vallianatos (2003), Piezo stimulated currents in marble samples: Precursory and concurrent-with-failure signals, Nat. Hazards Earth Syst. Sci. 3, 3/4, 243-247, DOI: 10.5194/nhess- 3-243-20. Stavrakas, I., D. Triantis, Z. Agioutantis, S. Maurigiannakis, V. Saltas, F. Vallianatos, and M. Clarke (2004), Pressure stimulated currents in rocks and their correlation with mechanical properties, Nat. Hazards Earth Syst. Sci. 4, 563-567, DOI: 10.5194/nhess-4-563-2004. Takeuchi, A., and H. Nagahama (2001), Voltage changes induced by stick-slip of granites, Geophys. Res. Lett. 28, 17, 3365-3368, DOI: 10.1029/2001GL 012981. Telesca, L. (2010a), Nonextensive analysis of seismic sequences, Physica A 389, 9, 1911-1914, DOI: 10.1016/j.physa.2010.01.012. Telesca, L. (2010b), A non-extensive approach in investigating the seismicity of L’Aquila area (central Italy), struck by the 6 April 2009 earthquake (ML = 5.8), Terra Nova 22, 2, 87-93, DOI: 10.1111/j.1365-3121.2009.00920.x. Tsallis, C. (1988), Possible generalization of Boltzmann–Gibbs statistics, J. Stat. Phys. 52, 1-2, 479-487, DOI: 10.1007/BF01016429. Tsallis, C. (1999), Nonextensive statistics: theoretical, experimental and computational evidences and connections, Braz. J. Phys. 29, 1, 1-35, DOI: 10.1590/ S0103-97331999000100002. Tsallis, C. (2009), Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World, Springer, New York, DOI: 10.1007/978-0-387-85359-8. Tsallis, C. (2001), Nonextensive statistical mechanics and thermodynamics: Historical background and present status. In: S. Abe and Y. Okamoto (eds.), Nonextensive Statistical Mechanics and Its Applications, Springer, Berlin, 3-98. Tzanis, A., and F. Vallianatos (2001), A critical review of ULF electric earthquake precursors, Ann. Geofis. 44, 2, 429-460. Tzanis, A., and F. Vallianatos (2002), A physical model of Electric Earthquake Precursors due to crack propagation and the motion of charged edge dislocations. In: M. Hayakawa and O.A. Molchanov (eds.), Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, TERRAPUB, Tokyo,117-130. Vallianatos, F. (2009), A non-extensive approach to risk assessment, Nat. Hazards Earth Syst. Sci. 9, 1, 211-216, DOI: 10.5194/nhess-9-211-2009. Vallianatos, F. (2011), A non-extensive statistical physics approach to the polarity reversals of the geomagnetic field, Physica A 390, 10, 1773-1778, DOI: 10.1016/j.physa.2010.12.040. Vallianatos, F., and P. Sammonds (2010), Is plate tectonics a case of non-extensive thermodynamics?, Physica A 389, 21, 4989-4993, DOI: 10.1016/j.physa. 2010.06.056. Vallianatos, F., and P. Sammonds (2011), A non-extensive statistics of the faultpopulation at the Valles Marineris extensional province, Mars, Tectonophysics 509, 1-2, 50-54, DOI: 10.1016/j.tecto.2011.06.001. Vallianatos, F., and D. Triantis (2008), Scaling in Pressure Stimulated Currents related with rock fracture, Physica A 387, 19-20, 4940-4946, DOI: 10.1016/ j.physa.2008.03.028. Vallianatos, F., and A. Tzanis (1998), Electric current generation associated with the deformation rate of a solid: Preseismic and coseismic signals, Phys. Chem. Earth 23, 9-10, 933-939, DOI: 10.1016/S0079-1946(98)00122-0. Vallianatos, F., and A. Tzanis (1999a), A model for the generation of precursory electric and magnetic fields associated with the deformation rate of the earthquake focus. In: M. Hayakawa (ed.), Atmospheric and Ionospheric electromagnetic phenomena associated with Earthquakes, TERRAPUB, Tokyo, 287-305. Vallianatos, F., and A. Tzanis (1999b), On possible scaling laws between electric earthquake precursors (EEP) and earthquake magnitude, Geophys. Res. Lett., 26, 13, 2013-2016, DOI: 10.1029/1999GL900406. Vallianatos, F., and A. Tzanis (2003), On the nature, scaling and spectral properties of pre-seismic ULF signals, Nat. Hazards Earth Syst. Sci. 3, 3/4, 237-242, DOI: 10.5194/nhess-3-237-2003. Vallianatos, F., D. Triantis, A. Tzanis, C. Anastasiadis, and I. Stavrakas (2004), Electric earthquake precursors: from laboratory results to field observations, Phys. Chem. Earth 29, 4-9, 339-351, DOI: 10.1016/j.pce.2003. 12.003. Vallianatos, F., E. Kokinou, and P. Sammonds (2011a), Non-extensive statistical physics approach to fault population distribution. A case study from the Southern Hellenic Arc (Central Crete), Acta Geophys. 59, 4, 770-784, DOI: 10.2478/s11600-011-0015-3. Vallianatos, F., D. Triantis, and P. Sammonds (2011b), Non-extensivity of the isothermal depolarization relaxation currents in uniaxial compressed rocks, EPL 94, 6, 68008, DOI: 10.1209/0295-5075/94/68008. Varotsos, P. (2005), The Physics of Seismic Electric Signals, TERRAPUB, Tokyo. Yamashita, T. (1976), On the dynamical process of fault motion in the presence of friction and inhomogeneous initial stress. Part I. Rupture propagation, J. Phys. Earth 24, 4, 417-444, DOI: 10.4294/jpe1952.24.417. Yoshida, S., M. Uyeshima, and M. Nakatani (1997), Electric potential changes associated with slip failure of granite: Preseismic and coseismic signals, J. Geophys. Res. 102, B7, 14883-14897, DOI: 10.1029/97JB00729.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn1895-6572en
dc.relation.eissn1895-7455en
dc.contributor.authorVallianatos, F.en
dc.contributor.authorNardi, A.en
dc.contributor.authorCarluccio, R.en
dc.contributor.authorChiappini, M.en
dc.contributor.departmentTechnological Educational Institution of Crete, Laboratory of Geophysics and Seismology, Chania, Crete, Greeceen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptTechnological Educational Institute of Crete, P.O. Box 1939 Chania, Crete, Greece-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0002-4600-5013-
crisitem.author.orcid0000-0002-7211-2963-
crisitem.author.orcid0000-0003-4344-0965-
crisitem.author.orcid0000-0001-7433-9435-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Acta_Geophysica_2012.pdf717.64 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

9
checked on Feb 10, 2021

Page view(s) 10

426
checked on Apr 17, 2024

Download(s) 50

58
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric