Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8577
DC FieldValueLanguage
dc.contributor.authorallRomano, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallPiatanesi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallLorito, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallD'Agostino, N.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallHirata, K.; Meteorological Research Institute, Japan Meteorological Agency, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japanen
dc.contributor.authorallAtzori, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallYamazaki, Y.; Department of Ocean and Resource Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, USAen
dc.contributor.authorallCocco, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2013-03-28T13:14:46Zen
dc.date.available2013-03-28T13:14:46Zen
dc.date.issued2012-04-27en
dc.identifier.urihttp://hdl.handle.net/2122/8577en
dc.description.abstractThe 2011 Tohoku-oki (Mw 9.1) earthquake is so far the best-observed megathrust rupture, which allowed the collection of unprecedented offshore data. The joint inversion of tsunami waveforms (DART buoys, bottom pressure sensors, coastal wave gauges, and GPS-buoys) and static geodetic data (onshore GPS, seafloor displacements obtained by a GPS/acoustic combination technique), allows us to retrieve the slip distribution on a non-planar fault. We show that the inclusion of near-source data is necessary to image the details of slip pattern (maximum slip ,48 m, up to ,35 m close to the Japan trench), which generated the large and shallow seafloor coseismic deformations and the devastating inundation of the Japanese coast. We investigate the relation between the spatial distribution of previously inferred interseismic coupling and coseismic slip and we highlight the importance of seafloor geodetic measurements to constrain the interseismic coupling, which is one of the key-elements for long-term earthquake and tsunami hazard assessment.en
dc.language.isoEnglishen
dc.publisher.nameNature Publishing Groupen
dc.relation.ispartofScientific Reportsen
dc.relation.ispartofseries/2 (2012)en
dc.subjectTohokuen
dc.subjectSubductionen
dc.subjectTsunamien
dc.subjectInverse problemen
dc.titleClues from joint inversion of tsunami and geodetic data of the 2011 Tohoku-oki earthquakeen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber385en
dc.identifier.URLhttp://www.nature.com/srep/2012/120427/srep00385/full/srep00385.html?WT.mc_id=FBK_SciReportsen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamicsen
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processesen
dc.identifier.doi10.1038/srep00385en
dc.relation.references1. Chu, R. et al. Initiation of the great Mw 9.0 Tohoku–Oki earthquake. Earth Planet. Sci. Lett., 308, 277–283, doi:10.1016/j.epsl.2011.06.031 (2011). 2. Fujii, Y., Satake, K., Sakai, S., Shinohara, M. & Kanazawa, T. Tsunami source of the 2011 off the Pacific coast of Tohoku, Japan earthquake. Earth, Planets and Space 63, 815–820, doi:10.5047/eps.2011.06.010 (2011). 3. Nagai, T. Development and Improvement of the Japanese coastal wave observation network (NOWPHAS). J. Jpn. Soc. Civil. Eng. no. 609 (VI-41), 1–14, in Japanese (1998). 4. Kato, T. et al. Tsunami due to the 2004 September 5th off the Kii Peninsula earthquake, Japan, recorded by a new GPS buoy. Earth, Planets Space 57, 279–301 (2005). 5. Momma, H. et al. Monitoring System for Submarine Earthquakes and Deep Sea Environment. Proc. MTS/IEEE OCEANS ’97 2, 1453–1459 (1997). 6. Hirata, K. et al. Real-time geophysical measurements on the deep seafloor using submarine cable in the southern Kurile subduction zone. IEEE J. Ocean Eng. 27, 170–181 (2002). 7. Fujisawa, I., Tateyama, S. & Fujisaki, J. Permanent ocean-bottom earthquake and tsunami observation system off the Boso Peninsula. Weath. Serv. Bull. 53, 127– 166, in Japanese (1986). 8. Kanazawa, T. & Hasegawa, A. Ocean-bottom observatory for earthquakes and tsunami off Sanriku, north-east Japan using submarine cable. International Workshop on Scientific Use of Submarine Cables, Comm. For Sci. Use of Submarine Cables, Okinawa, Japan (1997). 9. Saito, T., Ito, Y., Inazu, D. & Hino, R. Tsunami source of the 2011 Tohoku-Oki earthquake, Japan: Inversion analysis based on dispersive tsunami simulations. Geophys. Res. Lett. 38, L00G19, doi:10.1029/2011GL049089 (2011). 10. Yamazaki, Y., Lay, T., Cheung, K. F., Yue, H. & Kanamori, H. Modeling near-field tsunami observations to improve finite-fault slip models for the 11 March 2011 Tohoku earthquake. Geophys. Res. Lett. 38, L00G15, doi:10.1029/2011GL049130 (2011). 11. Tsushima, H. et al. Near-field tsunami forecasting using offshore tsunami data from the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space 63, 821–826, doi:10.5047/eps.2011.06.052 (2011). 12. Maeda, T., Furumura, T., Sakai, K. & Shinohara, S. Significant tsunami observed at the ocean-bottom pressare gauges at 2011 Off the Pacific Coast of Tohoku Earthquake. Earth, Planets and Space 63, 803–808, doi:10.5047/eps.2011.06.005 (2011). 13. Yokota, Y. et al. Joint inversion of strong motion, teleseismic, geodetic, and tsunami datasets for the rupture process of the 2011 Tohoku earthquake. Geophys. Res. Lett. 38, L00GL21, doi:10.1029/2011GL050098 (2011). 14. Gonza ́lez, F. I. et al. The NTHMP tsunameter network. Nat. Hazards 35, 25–39, doi:10.1007/s11069-004-2402-4 (2005). 15. Sato, M. et al. Displacement Above the Hypocenter of the 2011 Tohoku-Oki Earthquake. Science 332, 1395, doi:10.1126/science.1207401 (2011). 16. Kido, M., Osada, Y., Fujimoto, H., Hino, R. & Ito, Y. Trench-normal variation in observed seafloor displacements associated with the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett. 38, L24303, doi:10.1029/2011GL050057 (2011). 17. Satake, K. Inversion of tsunami waveforms for the estimation of a fault heterogeneity: method and numerical experiments. J. Phys. Earth. 35, 241–254 (1987). 18. Vigny, C. et al. The 2010 Mw 8.8 Maule Megathrust Earthquake of Central Chile, Monitored by GPS. Science 332, 1417–1421, doi:10.1126/science.1204132 (2011). 19. Lorito, S. et al. Limited overlap between the seismic gap and coseismic slip of the great 2010 Chile earthquake. Nat. Geosci. 4, 173–177, doi:10.1038/ngeo1073 (2011). 20. Satake, K. Depth Distribution of Coseismic Slip along the Nankai Trough, Japan, from Joint Inversion of Geodetic and Tsunami Data. J. Geophys. Res. 98, 4553– 4565 (1993). 21. Romano, F., Piatanesi, A., Lorito, S. & Hirata, K. Slip distribution of the 2003 Tokachi-oki Mw 8.1 earthquake from joint inversion of tsunami waveforms and geodetic data. J. Geophys. Res. 115, B11313, doi:10.1029/2009JB006665 (2010). 22. Pollitz, F. F., Bu ̈rgmann, R. & Banerjee, P. Geodetic slip model of the 2011 M9.0 Tohoku earthquake. Geophys. Res. Lett. 38, L00G08, doi:10.1029/2011GL048632 (2011). 23. Koketsu, K. et al. A unified source model for the 2011 Tohoku earthquake. Earth Planet. Sci. Lett. 310, 480–487, doi:10.1016/j.epsl.2011.09.009 (2011). 24. Lee, S. J., Huang, B. S., Ando, M., Chiu, H. C. & Wang, J. H. Evidence of large scale repeating slip during the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett. 38, L19306, doi:10.1029/2011GL049580 (2011).25. Newman, A. Hidden depths. Nature 474, 441–443, doi:10.1038/474441a (2011). 26. Nishimura, T. et al. Temporal change of interplate coupling in northeastern Japan during 1995-2002 estimated from continuous GPS observations. Geophysical Journal International 157, 901–916, doi:10.1111/j.1365-246X.2004.02159.x (2004). 27. Hashimoto, C., Akemi, N., Sagiya, T. & Matsu’ura, M. Interplate seismogenic zones along the Kuril-Japan trench inferred from GPS data inversion. Nat. Geosci. 2, 141–144, doi:10.1038/ngeo421 (2009). 28. McCloskey, J., Nalbant, S. S. & Steacy, S. Indonesian earthquake: Earthquake risk from co-seismic stress. Nature 434, 291, doi:10.1038/434291 (2005). 29. Konca, A. O. et al. Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence. Nature 456, 631–635, doi:10.1038/ nature07572 (2008). 30. Moreno, M., Rosenau, M. & Oncken, O. 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature 467, 198–202, doi:10.1038/nature09349 (2010). 31. Loveless, J. P. & Meade, B. J. Spatial correlation of interseismic coupling and coseismic rupture extent of the 2011 MW59.0 Tohoku-oki earthquake. Geophys. Res. Lett. 38, L17306, doi:10.1029/2011GL048561 (2011). 32. Moreno, M. et al. Heterogeneous plate locking in the South-Central Chile subduction zone: Building up the next great earthquake. Earth Planet. Sci. Lett. 305, 413–424, doi:10.1016/j.epsl.2011.03.025 (2011). 33. Savage, J. C. A Dislocation Model of Strain Accumulation and Release at a Subduction Zone. J. Geophys. Res. 88, 4984–4996 (1983). 34. Lay, T. & Kanamori, H. An asperity model of great earthquake sequences. Earthquake Prediction - An International Review, AGU Geophys. Mono.: Washington, D.C., p. 579–592 (1981). 35. Faulkner, D. R., Mitchell, T. M., Behnsen, J., Hirose, T. & Shimamoto, T. Stuck in the mud? Earthquake nucleation and propagation through accretionary forearcs. Geophys. Res. Lett. 38, L18303, doi:10.1029/2011GL048552 (2011). 36. Satake, K., Namegaya, Y. & Yamaki, S. Numerical simulation of the AD 869 Jogan tsunami in Ishinomaki and Sendai plains (in Japanese with English abstract). Ann. Rep. Active Fault Paleoearthquake Res. 8, 71–89 (2008). 37. Minoura, K., Imamura, F., Sugawara, D., Kono, Y. & Iwashita, T. The 869 Jogan tsunami deposit and recurrence interval of large-scale tsunami on the Pacific coast of northeast Japan. Journal of Natural Disaster Science 23, 2, 83–88 (2001). 38. Tanioka, Y. & Satake, K. Tsunami generation by horizontal displacement of ocean bottom. Geophys. Res. Lett. 23, 8, 861–864, doi:10.1029/96GL00736 (1996). 39. Kanamori, H., Miyazawa, M. & Mori, J. Investigation of the earthquake sequence off Miyagi prefecture with historical seismograms. Earth, Planets and Space 58, 1533–1541 (2006). 40. Sawai, Y. et al. Marine incursions of the past 1500 years and evidence of tsunamis at Suijin-numa, a coastal lake facing the Japan Trench. The Holocene 18, 517–528 (2008). 41. Ide, S., Baltay, A. & Beroza, G. C. Shallow Dynamic Overshoot and Energetic Deep Rupture in the 2011 Mw 9.0 Tohoku-Oki Earthquake. Science doi:10.1126/ science.1207020 (2011). 42. Lay, T., Ammon, C. J., Kanamori, H., Xue, L. & Kim, M. J. Possibile large near- trench slip during the great 2011 Tohoku (Mw9.0) earthquake. Earth, Planets and Space 63, 687–692, doi:10.5047/eps.2011.05.033 (2011). 43. Ammon, C., Lay, T., Kanamori, H. & Cleveland, M. ‘‘A rupture model of the great 2011 Tohoku earthquake’’. Earth, Planets and Space 63, 693–696, doi:10.5047/ eps.2011.05.015 (2011). 44. Simons, M., et al. The 2011 Magnitude 9.0 Tohoku-Oki Earthquake: Mosaicking the Megathrust from Seconds to Centuries. Science 332, 6036, 1421–1425, doi:10.1126/science.1206731 (2011). 45. Yue, H. & Lay, T. Inversion of high-rate (1 sps) GPS data for rupture process of the 11 March 2011 Tohoku earthquake (Mw 9.1). Geophys. Res. Lett. 38, L00G09, doi:10.1029/2011GL048700 (2011). 46. Ito, T., Ozawa K., Watanabe, T. & Sagiya, T. Slip distribution of the 2011 Tohoku earthquake inferred from geodetic data. Earth, Planets and Space 63, 627–630, doi:10.5047/eps.2011.06.023 (2011). 47. Suzuki, W., Aoi, S., Sekiguchi, H. & Kunugi, T. Rupture process of the 2011 Tohoku-Oki mega-thrust earthquake (M9.0) inverted from strong-motion data. Geophys. Res. Lett. 38, L00G16, doi:10.1029/2011GL049136 (2011). 48. Yoshida, Y., Ueno, H., Muto, D. & Aoki, S. Source process of the 2011 off the Pacific coast of Tohoku Earthquake with the combination of teleseismic and strong motion data. Earth, Planets and Space 63, 565–569, doi:10.5047/ eps.2011.05.011 (2011). 49. Yagi, Y. & Fukahata, Y. Rupture process of the 2011 Tohoku-oki earthquake and absolute elastic strain release. Geophys. Res. Lett. 38, L19307, doi:10.1029/ 2011GL048701 (2011). 50. Loveless, J. P. & Meade, B. J. Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan. J. Geophys. Res. 115, B02410, doi:10.1029/ 2008JB006248 (2010). 51. Gagnon, K., Chadwell, C. D. & Norabuena, E. Measuring the onset of locking in the Peru–Chile trench with GPS and acoustic measurements. Nature 434, doi:10.1038/nature03412 (2005). 52. Fujita, M. et al. GPS/Acoustic seafloor geodetic observation: method of data analysis and its application. Earth Planets Space 58, 265–275 (2006). 53. Rothman, D. Automatic estimation of large residual statics corrections. Geophysics 51, 332–346, doi:10.1190/1.1442092 (1986).54. DeMets, C., Gordon, R. G. & Argus, D. F. Geologically current plate motions. Geophysical Journal International 181, 1–80, doi:10.1111/j.1365- 246X.2009.04491.x (2010). 55. Huang, Z., Zhao, D. & Wang, L. Seismic heterogeneity and anisotropy of the Honshu arc from the Japan Trench to the Japan Sea. Geophysical Journal International 184, 1428–1444, doi:10.111/j.1365-246X.2011.04934.x (2011). 56. Meng, L., Inbal, A. & Ampuero, J.-P. A window into the complexity of the dynamic rupture of the 2011 Mw 9 Tohoku-Oki earthquake. Geophys. Res. Lett. 38, L00G07, doi:10.1029/2011GL048118 (2011). 57. Yao, H., Gerstoft, P., Shearer, P. M. & Mecklenbra ̈uker, C. Compressive sensing of the Tohoku-Oki Mw 9.0 earthquake: Frequency-dependent rupture modes. Geophys. Res. Lett. 38, L20310, doi:10.1029/2011GL049223 (2011). 58. Koper, K. D., Hutko, A. R. & Lay, T. Along-dip variation of teleseismic short- period radiation from the 11 March 2011 Tohoku earthquake (Mw 9.0). Geophys. Res. Lett. 38, L21309, doi:10.1029/2011GL049689 (2011). 59. Lay, T. & Kanamori, H. Insights from the great 2011 Japan earthquake. Phys. Today 64(12), 33–39, doi:10.1063/PT.3.1361 (2011). 60. Hoechner, A., Babeyko, A. Y. & Sobolev, S. V. Enhanced GPS inversion technique applied to the 2004 Sumatra earthquake and tsunami. Geophys. Res. Lett. 35, L08310, doi:10.1029/2007GL033133 (2008). 61. Ito, Y. et al. Frontal wedge deformation near the source region of the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett. 38, L0OG05, doi:10.1029/ 2011GL048355 (2011). 62. Tsuji, T. et al. Potential Tsunamigenic Faults of the 2011 Tohoku Earthquake. Earth, Planets and Space 63, 831–834, doi:10.5047/eps.2011.05.028 (2011). 63. Fujiwara, T. et al. The 2011 Tohoku-Oki Earthquake: Displacement Reaching the Trench Axis. Science 334, 6060, 1240, doi:10.1126/science.1211554 (2011). 64. Kawamura, K., Sasaki, T., Kanamatsu, T., Sakaguchi, A. & Ogawa, Y. Large submarine landslides in the Japan Trench: A new scenario for additional tsunami generation. Geophys. Res. Lett. 39, L05308, doi:10.1029/2011GL050661 (2012). 65. Wang, D. & Mori, J. Frequency-dependent energy radiation and fault coupling for the 2010 Mw8.8 Maule, Chile, and 2011 Mw9.0 Tohoku, Japan, earthquakes. Geophys. Res. Lett. 38, L22308, doi:1029/2011/GL049652 (2011). 66. Ozawa, S. et al. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku- Oki earthquake. Nature 475, 373–376, doi:10.1038/nature10227 (2011). 67. Ohzono, M., Iinuma, T., Ohta, Y. & Miura, S. Coseismic slip distribution of the 2011 off the Pacific coast of Tohoku Earthquake (M9.0) estimated based on GPS data – Was the asperity in Miyagi-oki ruptured? Earth, Planets and Space 63, 643– 648, doi:10.5047/eps.2011.06.013 (2011). 68. Monastersky, R. Tsunami forecasting: The next wave. Nature 483, 144–146, doi: 10.1038/483144a (2012). 69. Matsumoto, Y. et al. Weal interplate coupling beneath the subduction zone off Fukushima, NE Japan, inferred from GPS/acoustic seafloor geodetic observation. Earth, Planets and Space 60, e9-e12 (2008). 70. Sato, M. et al. Restoration of interplate locking after the 2005 Off-Miyagi Prefecture earthquake, detected by GPS/acoustic seafloor geodetic observation. Geophys. Res. Lett. 38, L01312, doi:10.1029/2010GL045689 (2011). 71. Barbosa, S. M., Fernandes, M. J. & Silva, M. E. Nonlinear sea level trends from European tide gauge records. Annales Geophysicae 22, 1465–1472 (2004). 72. Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M. & Webb, F. H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. 102, 5005–5017, doi:10.1029/96JB03860 (1997). 73. Bertiger, W. et al. Single receiver phase ambiguity resolution with GPS data. J. Geodesy 84, 327–337, doi:10.1007/s00190-010-0371-9 (2010).74. Hayes, G. P. &, Wald, D. J. Advancing techniques to constrain the geometry of the seismic rupture plane on subduction interfaces a priori: Higher-order functional fits. Geochem. Geophys. Geosyst. 10, Q09006, doi:10.1029/2009GC002633 (2009). 75. Meade, B. J. Algorithms for the calculation of exact displacements, strains, and stresses for triangular dislocation elements in a uniform elastic half space. Comput. Geosci. 33, 1064–1075, doi:10.1016/j.cageo.2006.12.003 (2007). 76. Yamazaki, Y., Kowalik, Z. & Cheung, K. F. Depth-integrated, non-hydrostatic model for wave breaking. Int. J. Numer. Meth. Fluids 61, 473–497, doi:10.1002/ fld.1952 (2009). 77. Yamazaki, Y., Cheung, K. F. & Kowalik, Z. Depth-integrated, non-hydrostatic model with grid nesting for tsunami generation, propagation, and run-up. Int. J. Numer. Meth. Fluids 67, 2081–2107, doi:10.1002/fld.2485 (2011). 78. Sen, M. & Stoffa, P. L. Nonlinear one-dimensional seismic waveform inversion using simulated annealing. Geophysics 56, 1624–1638, doi:10.1190/1.1442973 (1991). 79. Spudich, P. & Miller, D. P. Seismic site effects and the spatial interpolation of earthquake seismograms: results using aftershocks of the 1986 North Palm Springs, California, earthquake. Bull. Seismol. Soc. Am. 80, 6, 1504–1532, (1990).en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeN/A or not JCRen
dc.description.fulltextrestricteden
dc.relation.eissn2045-2322en
dc.contributor.authorRomano, F.en
dc.contributor.authorPiatanesi, A.en
dc.contributor.authorLorito, S.en
dc.contributor.authorD'Agostino, N.en
dc.contributor.authorHirata, K.en
dc.contributor.authorAtzori, S.en
dc.contributor.authorYamazaki, Y.en
dc.contributor.authorCocco, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentMeteorological Research Institute, Japan Meteorological Agency, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japanen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentDepartment of Ocean and Resource Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, USAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptMeteorological Research Institute, Japan Meteorological Agency, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptDepartment of Ocean and Resource Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0003-2725-3596-
crisitem.author.orcid0000-0003-2863-3662-
crisitem.author.orcid0000-0002-1458-2131-
crisitem.author.orcid0000-0002-0444-6240-
crisitem.author.orcid0000-0002-5031-9904-
crisitem.author.orcid0000-0001-6798-4225-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Romano_SREP_2012.pdfMain article555.72 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

64
checked on Feb 10, 2021

Page view(s) 50

321
checked on Apr 13, 2024

Download(s)

26
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric