Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8495
DC FieldValueLanguage
dc.contributor.authorallCarbone, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallPoland, M.; U.S. Geological Survey, Hawaiian Volcano Observatory, PO Box 51, Hawaii National Park, Hawaii 96718-0051, USAen
dc.date.accessioned2013-01-23T13:22:03Zen
dc.date.available2013-01-23T13:22:03Zen
dc.date.issued2012-06-29en
dc.identifier.urihttp://hdl.handle.net/2122/8495en
dc.description.abstractConvection in magma chambers is thought to play a key role in the activity of persistently active volcanoes, but has only been inferred indirectly from geochemical observations or simulated numerically. Continuous microgravity measurements, which track changes in subsurface mass distribution over time, provide a potential method for characterizing convection in magma reservoirs. We recorded gravity oscillations with a period of ~150 s at two continuous gravity stations at the summit of Kīlauea Volcano, Hawai‘i. The oscillations are not related to inertial accelerations caused by seismic activity, but instead indicate variations in subsurface mass. Source modeling suggests that the oscillations are caused by density inversions in a magma reservoir located ~1 km beneath the east margin of Halema‘uma‘u Crater in Kīlauea Caldera—a location of known magma storage.en
dc.language.isoEnglishen
dc.publisher.nameGeological Society of Americaen
dc.relation.ispartofGeology (Geological Society of America)en
dc.relation.ispartofseries9/40 (2012)en
dc.subjectgravity oscillationen
dc.subjectshallow magma convectionen
dc.titleGravity fluctuations induced by magma convection at Kılauea, Hawai‘ien
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber803-806en
dc.identifier.URLhttp://geology.gsapubs.org/content/early/2012/06/21/G33060.1.abstract?rss=1en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processesen
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methodsen
dc.identifier.doi10.1130/G33060.1en
dc.relation.referencesCarbone, D., Zuccarello, L., Saccorotti, G., and Greco, F., 2006, Analysis of simultaneous gravity and tremor anomalies observed during the 2002– 2003 Etna eruption: Earth and Planetary Science Letters, v. 245, p. 616–629, doi:10.1016/j.epsl .2006.03.055. Carbone, D., Zuccarello, L., and Saccorotti, G., 2008, Geophysical indications of magma uprising at Mt Etna during the December 2005 to January 2006 non-eruptive period: Geophysical Research Letters, v. 35, doi:10.1029/2008GL033212. Carbone, D., Zuccarello, L., Saccorotti, G., Rymer, H., and Rapisarda, S., 2010, The effect of inertial accelerations on the higher frequency components of the signal from spring gravimeters: Geophysical Journal International, v. 182, p. 772–780, doi:10.1111/j.1365-246X.2010.04644.x. Cervelli, P.F., and Miklius, A., 2003, The shallow magmatic system of Kīlauea Volcano, in Heliker, C., et al., eds., The Pu‘u ‘Ō‘ō-Kupaianaha eruption of Kīlauea Volcano, Hawai‘i: The fi rst 20 years: U.S. Geological Survey Professional Paper 1676, p. 149–163. Clague, D.A., Moore, J.G., Dixon, J.E., and Friesen, W.B., 1995, Petrology of submarine lavas from Kilauea’s Puna Ridge, Hawaii: Journal of Petrology, v. 36, p. 299–349. Gerlach, T.M., and Graeber, E.J., 1985, Volatile budget of Kilauea volcano: Nature, v. 313, p. 273–277, doi:10.1038/313273a0. Gerlach, T.M., McGee, K.A., Elias, T., Sutton, A.J., and Doukas, M.P., 2002, Carbon dioxide emission rate of Kīlauea Volcano: Implications for primary magma and the summit reservoir: Journal of Geophysical Research, v. 107, doi:10.1029 /2001JB000407. Gottsmann, J., Wooller, L., Martı, J., Fernández, J., Camacho, A.G., Gonzalez, P.J., Garcia, A., and Rymer, H., 2006, New evidence for the reawakening of Teide volcano: Geophysical Research Letters, v. 33, L20311, doi:10.1029/2006GL027523. Grinsted, A., Moore, J.C., and Jevrejeva, S., 2004, Application of the cross wavelet transform and wavelet coherence to geophysical time series: Nonlinear Processes in Geophysics, v. 11, p. 561–566, doi:10.5194/npg-11-561-2004. Heliker, C., and Mattox, T.N., 2003, The fi rst two decades of the Pu‘u ‘Ō‘ō-Kupaianaha eruption: chronology and selected bibliography, in Heliker, C., et al., eds., The Pu‘u ‘Ō‘ō-Kupaianaha eruption of Kīlauea Volcano, Hawai`i: The fi rst 20 years: U.S. Geological Survey Professional Paper 1676, p. 1–27. Houghton, B.F., Swanson, D.A., Carey, R.J., Rausch, J., and Sutton, A.J., 2011, Pigeonholing pyroclasts: Insights from the 19 March 2008 explosive eruption of Kīlauea volcano: Geology, v. 39, p. 263–266, doi:10.1130/G31509.1. Johnson, D.J., Eggers, A.A., Bagnardi, M., Battaglia, M., Poland, M.P., and Miklius, A., 2010, Shallow magma accumulation at Kīlauea Volcano, Hawai‘i, revealed by microgravity surveys: Geology, v. 38, p. 1139–1142, doi:10.1130/G31323.1. Kauahikaua, J., Mangan, M., Heliker, C., and Mattox, T., 1996, A quantitative look at the demise of a basaltic vent: The death of Kupaianaha, Kilauea Volcano, Hawai‘i: Bulletin of Volcanology, v. 57, p. 641–648, doi:10.1007/s004450050117. Kazahaya, K., Shinohara, H., and Saito, G., 2002, Degassing process of Satsuma-Iwojima Volcano, Japan: Supply of volatile components from a deep magma chamber: Earth, Planets, and Space, v. 54, p. 327–335. Konstantinou, K.I., and Schlindwein, V., 2003, Nature, wavefi eld properties and source mechanism of volcanic tremor: A review: Journal of Volcanology and Geothermal Research, v. 119, p. 161– 187, doi:10.1016/S0377-0273(02)00311-6. Longo, A., Vassalli, M., Papale, P., and Barsanti, M., 2006, Numerical simulation of convection and mixing in magma chambers replenished with CO2-rich magma: Geophysical Research Letters, v. 33, doi:10.1029/2006GL027760. Ohminato, T., Chouet, B.A., Dawson, P.B., and Kedar, S., 1998, Waveform inversion of very long period impulsive signals associated with magmatic injection beneath Kilauea Volcano, Hawaii: Journal of Geophysical Research, v. 103, p. 23,839–23,862, doi:10.1029/98JB01122. Patrick, M., Wilson, D., Fee, D., Orr, T., and Swanson, D., 2011, Shallow degassing events as a trigger for very-long-period seismicity at Kīlauea Volcano, Hawai‘i: Bulletin of Volcanology, v. 73, p. 1179–1186, doi:10.1007/s00445-011-0475-y. Poland, M.P., Sutton, A.J., and Gerlach, T.M., 2009, Magma degassing triggered by static decompression at Kīlauea Volcano, Hawai‘i: Geophysical Research Letters, v. 36, p. L16306, doi:10.1029/2009GL039214. Ruprecht, P., Bergantz, G.W., and Dufek, J., 2008, Modeling of gas-driven magmatic overturn: Tracking of phenocryst dispersal and gathering during magma mixing: Geochemistry Geophysics Geosystems, v. 9, doi:10.1029/2008GC002022. Rymer, H., Cassidy, J., Locke, C.A., Barboza, M.V., Barquero, J., Brenes, J., and Van der Laat, R., 2000, Geophysical studies of the recent 15-year eruptive cycle at Poas volcano, Costa Rica: Journal of Volcanology and Geothermal Research, v. 97, p. 425–442, doi:10.1016/S0377-0273(99) 00166-3. Sutton, A.J., Elias, T., Gerlach, T.M., and Stokes, J.B., 2001, Implications for eruptive processes as indicated by sulfur dioxide emissions from Kīlauea Volcano, Hawai`i, 1979–1997: Journal of Volcanology and Geothermal Research, v. 108, p. 283–302, doi:10.1016/S0377 -0273(00)00291-2. Turcotte, D.L., and Schubert, G., 2002, Geodynamics: Cambridge, Cambridge University Press, 456 p. Vassalli, M., Longo, A., Montagna, C.P., O’Brien, G.S., Bean, C.J., Bisconti, L., Papale, P., and Saccorotti, G., 2009, An integrated method to model volcanic processes and associated geophysical signals, in Bean, C.J., et al., eds., The VOLUME project, VOLcanoes: Understanding subsurface mass movement: Dublin, Ireland, The Volume Consortium, p. 162–174. Welch, P.D., 1967, The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modifi ed periodograms: IEEE Transactions on Audio and Electroacoustics, v. 15, p. 70–73, doi:10.1109/TAU.1967.1161901.en
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0091-7613en
dc.relation.eissn1943-2682en
dc.contributor.authorCarbone, D.en
dc.contributor.authorPoland, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentU.S. Geological Survey, Hawaiian Volcano Observatory, PO Box 51, Hawaii National Park, Hawaii 96718-0051, USAen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptHawaiian Volcano Observatory, U.S. Geological Survey, Hawaii, USA-
crisitem.author.orcid0000-0003-2566-6290-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Carbone_&_Poland_GEOLOGY_2012.pdfMain article1.02 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

16
checked on Feb 10, 2021

Page view(s) 20

284
checked on Apr 24, 2024

Download(s) 50

57
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric