Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8485
DC FieldValueLanguage
dc.contributor.authorallVassallo, M.; Dipartimento di Scienze Fisiche Università Federico II, Napoli and Analisi e Monitoraggio del Rischio Ambientale (AMRA) Scarlen
dc.contributor.authorallFesta, G.; Dipartimento di Scienze Fisiche Università Federico II, Napolien
dc.contributor.authorallBobbio, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2013-01-23T12:59:31Zen
dc.date.available2013-01-23T12:59:31Zen
dc.date.issued2012-04en
dc.identifier.urihttp://hdl.handle.net/2122/8485en
dc.description.abstractWe studied the ambient noise recorded at Irpinia Seismic Network (ISNet), a seismic network installed along the Campania–Lucania Apenninic chain (southern Italy), with the aim of characterizing the noise spectrum for each station as a function of time and the detection threshold of the network. For the latter purpose, we proposed a mixed indirect approach based on the signal-to-noise ratio (SNR) in the time domain, with parameterization in the frequency domain. The source signature is represented by the convolution of the Brune source time function with the Azimi attenuation curve. We found that 1.3 is the minimum magnitude an event should have to be detected at least at five stations with an SNR larger than five, wherever it occurs. We observed a space variability of the detection threshold as large as 0.3 units, ascribed to both the geometrical configuration of the network and the differences in the noise levels at the different stations. A sensitivity study indicates that the estima- tion of the detection threshold is robust for changes in the focal depths and stress drop, while it is strongly affected by the anelastic attenuation. In our case, changes of the reduced time t␣ in the range 0.015–0.035 s generate changes in the completeness threshold of 0.5 units. Noise levels were obtained by a statistical analysis on the power spectral density curves along almost three years of continuous data from 22 stations. We found that, at short periods, major time variations are generated by diurnal changes in the wind intensity and other meteorological factors. At longer periods, we retrieved the micro- seismic peak, resulting from the constructive interference of oceanic waves. We also found an additional peak between 2 and 4 s, correlated with the sea wave height along the Tyrrhenian coast.en
dc.language.isoEnglishen
dc.publisher.nameSeismological Society of Americaen
dc.relation.ispartofBulletin of the Seismological Society of America,en
dc.relation.ispartofseries2/102 (2012)en
dc.subjectseismic noise, seismic network, detection threshold, local events, power spectral density, seismic sourceen
dc.titleSeismic Ambient Noise Analysis in Southern Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber574–586en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.identifier.doi10.1785/0120110018en
dc.relation.referencesAki, K., and P. G. Richards (1980). Quantitative Seismology: Theory and Methods, W. H. Freeman, San Francisco, 932 pp. Bensen, G. D., M. H. Ritzwoller, and N. M. Shapiro (2008). Broadband ambient noise surface wave tomography across the United Stated, J. Geophys. Res. 113, no. B05306, doi 10.1029/2007JB005248. Bobbio, A., M. Vassallo, and G. Festa (2009). A local magnitude scale for southern Italy, Bull. Seismol. Soc. Am. 99, no. 4, 2461–2470, doi 10.1785/0120080364. Boore, D. M., and J. Boatwright (1984). Average body-wave radiation coefficients, Bull. Seismol. Soc. Am. 74, no. 5, 1615–1621. Bormann, P. (Editor) (2002). New Manual of Seismological Observatory Practice, GeoForschungsZentrum, Potsdam, Germany, 1252 pp. Brune, J. N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res. 75, 4997–5009. Brune, J. N. (1971). (Correction) Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res. 76, 5002. Bungum, H., E. Rygg, and L. Bruland (1971). Short-period seismic noise structure at the Norwegian Seismic Array, Bull. Seismol. Soc. Am. 61, 357–373. Cao, A., and S. Gao (2002). Temporal variation of seismic b-values beneath northeastern Japan island arc, Geophys. Res. Letts. 29, no. 9, 1334, doi 10.1029/2001GL013775. Carena, S., J. Suppe, and H. Kao (2002). Active detachment of Taiwan illuminated by small earthquakes and its control of first-order topogra- phy, Geology 30, no. 10, 935–938. Chevrot, S., M. Sylvander, S. Benahmed, C. Ponsolles, J. M. Lefevre, and D. Paradis (2007). Source locations of secondary microseisms in western Europe: Evidence for both coastal and pelagic sources, J. Geo- phys. Res. 112, no. B11301, doi 10.1029/2007JB005059. Crampin, S., T. Volti, S. Chastin, A. Gudmundsson, and R. Stefánsson (2002). Indication of high pore-fluid pressures in a seismically-active fault zone, Geophys. J. Int. 151, F1–F5, doi 10.1046/j.1365- 246X.2002.01830.x. Diaz, J., A. Villasenor, J. Morales, A. Pazos, D. Cordoba, J. Pulgar, J. L. Garcia-Lobon, M. Harnafi, R. Carbonell, and J. Gallart (2010). Background noise characteristics at the IberArray Broadband Seismic Network, Bull. Seismol. Soc. Am. 100, no. 2, 618–628, doi 10.1785/0120090085. De Matteis, R., A. Romeo, G. Pasquale, G. Iannaccone, and A. Zollo (2010). 3D tomographic imaging of the southern Apennines (Italy): A statis- tical approach to estimate the model uncertainty and resolution, Studia Geophysica et Geodaetica 54, no. 3, 367–387, doi 10.1007/s11200- 010-0022-x. Fukuyama, E., W. L. Ellsworth, F. Waldhauser, and A. Kubo (2003). Detailed fault structure of the 2000 western Tottori, Japan, earthquake sequence, Bull. Seismol. Soc. Am. 93, 1468–1478, doi 10.1785/0120020123. Frontera, T., A. Ugalde, C. Olivera, J. A. Jara, and X. Goula (2010). Seismic ambient noise characterization of a new permanent broadband ocean bottom seismometer site offshore Catalonia (northeastern Iberian Peninsula), Seismol. Res. Lett. 81, no. 5, 740–749, doi 10.1785/ gssrl.81.5.740. Gomberg, J. (1991). Seismicity and detection/location threshold in the southern Great Basin seismic network, J. Geophys. Res. 96, no. B10, 16,401–16,414, doi 10.1029/91JB01593. Groos, J. C., and J. R. R. Ritter (2009). Time domain classification and quan- tification of seismic noise in an urban environment, Geophys. J. Int. 179, no. 2, 1213–1231, doi 10.1111/j.1365-246X.2009.04343.x. Hardebeck, J. L. (2006). Homogeneity of small-scale earthquake faulting, stress and fault strength, Bull. Seismol. Soc. Am. 96, 1675–1688. Hardebeck, J. L., and P. M. Shearer (2003). Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes, Bull. Seismol. Soc. Am. 93, 2434–2444. Helmsetter, A., and D. Sornette (2002). Diffusion of epicenters of earth- quake aftershocks, Omori’s law, and generalized continuous-time random walk models, Phys. Rev. E 66, 061104. Iannaccone, G., M. Vassallo, L. Elia, S. Guardato, T. A. Stabile, C. Satriano, and L. Beranzoli (2010). Long-term seafloor experiment with the CUMAS module: Performance, noise analysis of geophysical signals and suggestions about the design of a permanent network, Seismol. Res. Lett. 81, 6, doi 10.1785/gssrl.81.6.916. Iannaccone, G., A. Zollo, L. Elia, V. Convertito, C. Satriano, C. Martino, G. Festa, M. Lancieri, A. Bobbio, T. A. Stabile, M. Vassallo, and A. Emolo (2010). A prototype system for earthquake early-warning and alert management southern Italy, Bull. Earthq. Eng., doi 10.1007/s10518-009-9131-8. Improta, L., M. Bonagura, P. Capuano, and G. Iannaccone (2003). An integrated geophysical investigation of the upper crust in the epicentral area of the 1980, Ms 6:9, Irpinia earthquake (southern Italy), Tec- tonophysics 361, no. 1-2, 139–169. Johnson, C. E., A. Bittenbinder, B. Bogaert, L. Dietz, and W. Kohler (1995). Earthworm: A flexible approach to seismic network processing, IRIS Newsletter 14, no. 2, 1–4. Longuet-Higgins, M. S. (1950). A theory of the origin of microseisms, Phil. Trans. Roy. Soc. Lond. A 243, 1–35. Margheriti, L., and A. Zollo (2010). High-resolution multi-disciplinary monitoring of active fault test-site areas in Italy, Final Report S5- DPC-INGV Project, http://dpc‐s5.rm.ingv.it/en/S5.html (last accessed October 2011), 14 pp. Marzorati, S., and D. Bindi (2006). Ambient noise levels in north central Italy, Geochem. Geophys. Geosyst. 7, Q09010,doi 10.1029/ 2006GC001256. McNamara, D. E., and R. P. Buland (2004). Ambient noise levels in the con- tinental United States, Bull. Seismol. Soc. Am. 94, no. 4, 1517–1527. McNamara, D., R. P. Buland, H. Benz, and W. Leith (2004). Earthquake detection and location capabilities of the Advanced National Seismic System, EOS Trans. AGU 85, no. 47, 2004. McNamara, D. E., P. Earle, R. P. Buland, and H. M. Benz (2005). An as- sessment of proposed upgrades to the ANSS and GSN, 17th Annual IRIS Workshop, 9–11 June 2005, Stevenson, Washington. Peterson, J. (1993). Observation and modeling of seismic background noise, U.S. Geol. Surv. Open-File Rept. 93-322, 94 pp. Ringdal, F. (1975). On the estimation of seismic detection thresholds, Bull. Seismol. Soc. Am. 65, 1631–1642. Ringdal, F., and T. Kvaerna (1989). A multi-channel processing approach to real time network detection, phase association, and threshold monitor- ing, Bull. Seismol. Soc. Am. 79, 1927–1940. Sammis, C. G., and S. Smith (1999). Seismic cycles and the evolution of stress correlation in cellular automation models of finite fault net- works, Pure Appl. Geophys. 155, 307–334. Schorlemmer, D., F. Mele, and W. Marzocchi (2010). A completeness analysis of the National Seismic Network of Italy, J. Geophys. Res. 115, no. B04308, doi 10.1029/2008JB006097. Schorlemmer, D., and J. Woessner (2008). Probability of detecting an earth- quake, Bull. Seismol. Soc. Am. 98, no. 5, 2103–2117, doi 10.1785/ 0120070105. Shapiro, N. M., M. Campillo, L. Stehly, and M. H. Ritzwoller (2005). High resolution surface wave tomography from ambient seismic noise, Science 307, 1615–1618. Vassallo, M., A. Bobbio, and G. Iannaccone (2008). A comparison of sea-floor and on-land seismic ambient noise in the Campi Flegrei caldera, southern Italy, Bull. Seismol. Soc. Am. 98, no. 6, 2962– 2974, doi 10.1785/0120070152. Waldhauser, F., and W. L. Ellsworth (2000). A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California, Bull. Seismol. Soc. Am. 90, 1353–1368. Weber, E., V. Convertito, G. Iannaccone, A. Zollo, A. Bobbio, L. Cantore, M. Corciulo, M. Di Crosta, L. Elia, C. Martino, A. Romeo, and C. Satriano (2007). An advanced seismic network in the southern Apennines (Italy) for seismicity investigations and experimentation with earthquake early warning, Seismol. Res. Lett. 78, 622–534. Welch, P. D. (1967). The use of fast Fourier transform for the estima- tion of power spectra: a method based on time averaging over short, modified periodograms, IEEE Trans. Audio Electroacoust. 15,70–73. Wiemer, S., and M. Wyss (2000). Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western United States and Japan, Bull. Seismol. Soc. Am. 90, no. 4, 859–869.en
dc.description.obiettivoSpecifico4.1. Metodologie sismologiche per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorVassallo, M.en
dc.contributor.authorFesta, G.en
dc.contributor.authorBobbio, A.en
dc.contributor.departmentDipartimento di Scienze Fisiche Università Federico II, Napoli and Analisi e Monitoraggio del Rischio Ambientale (AMRA) Scarlen
dc.contributor.departmentDipartimento di Scienze Fisiche Università Federico II, Napolien
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptDipartimento di Scienze Fisiche Università di Napoli Federico II-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0001-8552-6965-
crisitem.author.orcid0000-0002-2588-8160-
crisitem.author.orcid0000-0003-2386-8737-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
SeismicAmbientNoise_BSSA12.pdfMain article1.68 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

13
checked on Feb 10, 2021

Page view(s)

322
checked on Apr 17, 2024

Download(s)

40
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric