Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8477
DC FieldValueLanguage
dc.contributor.authorallDe Gori, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallLucente, F. P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallLombardi, A. M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallChiarabba, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallMontuori, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2013-01-02T14:31:40Zen
dc.date.available2013-01-02T14:31:40Zen
dc.date.issued2012-08-04en
dc.identifier.urihttp://hdl.handle.net/2122/8477en
dc.description.abstractIn this study we map the distribution of the b-value of the Gutenberg-Richter law—as well as complementary seismicity parameters—along the fault responsible for the 2009 MW 6.1 L'Aquila earthquake. We perform the calculations for two independent aftershock sub-catalogs, before and after a stable magnitude of completeness is reached. We find a substantial spatial variability of the b-values, which range from 0.6 to 1.3 over the fault plane. The comparison between the spatial distribution of the b-values and the main-shock slip pattern shows that the largest slip occurs in normal-to-high b-values portion of the fault plane, while low b-value is observed close to the main-shock nucleation. No substantial differences are found in the b-value computed before and after the main-shock struck in the small region of the fault plane populated by foreshocks.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofGeophysical Research Lettersen
dc.relation.ispartofseries/39 (2012)en
dc.subjectL'Aquila earthquake, b-value, heterogeneities, seimicity parameters.en
dc.titleHeterogeneities along the 2009 L’Aquila normal fault inferred by the b-value distributionen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberL15304en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolutionen
dc.identifier.doi10.1029/2012GL052822en
dc.relation.referencesAki, K. (1965), Maximum likelihood estimate of b in the formula log N = a – bM and its confidence limits, Bull. Earthquake Res. Inst. Univ. Tokyo, 43, 237–239. Aki, K. (1984), Asperities, barriers, characteristic earthquakes and strong motion prediction, J. Geophys. Res., 89, 5867–5872, doi:10.1029/JB089iB07p05867.[AGU] Amitrano, D. (2003), Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b-value, J. Geophys. Res., 108(B1), 2044, doi:10.1029/2001JB000680.[AGU] Amitrano, D. (2012), Variability in the power-law distributions of rupture events, how and why does b-value change, Eur. Phys. J. Spec. Top., 205(1), 199–215, doi:10.1140/epjst/e2012-01571-9.[CrossRef] Amorèse, D., J. R. Grasso, and P. A. Rydelek (2010), On varying b-values with depth: Results from computer-intensive tests for Southern California, Geophys. J. Int., 180, 347–360, doi:10.1111/j.1365-246X.2009.04414.x.[CrossRef] Atzori, S., I. Hunstad, M. Chini, S. Salvi, C. Tolomei, C. Bignami, S. Stramondo, E. Trasatti, A. Antonioli, and E. Boschi (2009), Finite fault inversion of DInSAR coseismic displacement of the 2009 L'Aquila earthquake (central Italy), Geophys. Res. Lett., 36, L15305, doi:10.1029/2009GL039293.[AGU] Cheloni, D., et al. (2010), Coseismic and initial post-seismic slip of the 2009 Mw 6.3 L'Aquila earthquake, Italy, from GPS measurements, Geophys. J. Int., 181, 1539–1546, doi:10.1111/j.1365-246X.2010.04584.x.[CrossRef] Chiarabba, C., et al. (2009), The 2009 L'Aquila (central Italy) Mw 6.3 earthquake: Main shock and aftershocks, Geophys. Res. Lett., 36, L18308, doi:10.1029/2009GL039627.[AGU] Chiaraluce, L., L. Valoroso, D. Piccinini, R. Di Stefano, and P. De Gori (2011), The anatomy of the 2009 L'Aquila normal fault system (central Italy) imaged by high resolution foreshock and aftershock locations, J. Geophys. Res., 116, B12311, doi:10.1029/2011JB008352.[AGU] Cirella, A., A. Piatanesi, M. Cocco, E. Tinti, L. Scognamiglio, A. Michelini, A. Lomax, and E. Boschi (2009), Rupture history of the 2009 L'Aquila (Italy) earthquake from non‐linear joint inversion of strong motion and GPS data, Geophys. Res. Lett., 36, L19304, doi:10.1029/2009GL039795.[AGU] D'Agostino, N., D. Cheloni, G. Fornaro, R. Giuliani, and D. Reale (2012), Space-time distribution of afterslip following the 2009 L'Aquila earthquake, J. Geophys. Res., 117, B02402, doi:10.1029/2011JB008523.[AGU] Das, S., and K. Aki (1977), Fault plane with barriers-versatile earthquake model, J. Geophys. Res., 82, 5658–5670, doi:10.1029/JB082i036p05658.[AGU] Di Stefano, R., C. Chiarabba, L. Chiaraluce, M. Cocco, P. De Gori, D. Piccinini, and L. Valoroso (2011), Fault zone properties affecting the rupture evolution of the 2009 (Mw 6.1) L'Aquila earthquake (central Italy): Insights from seismic tomography, Geophys. Res. Lett., 38, L10310, doi:10.1029/2011GL047365.[AGU] Enescu, B., J. Mori, and M. Miyazawa (2007), Quantifying early aftershock activity of the 2004 mid-Niigata Prefecture earthquake (Mw6.6), J. Geophys. Res., 112, B04310, doi:10.1029/2006JB004629.[AGU] Ghosh, A., A. V. Newman, A. M. Thomas, and G. T. Farmer (2008), Interface locking along the subduction megathrust from b-value mapping near Nicoya Peninsula, Costa Rica, Geophys. Res. Lett., 35, L01301, doi:10.1029/2007GL031617.[AGU] Goebel, T. H. W., T. W. Becker, D. Schorlemmer, S. Stanchits, C. Sammis, E. Rybacki, and G. Dresen (2012), Identifying fault heterogeneity through mapping spatial anomalies in acoustic emission statistics, J. Geophys. Res., 117, B03310, doi:10.1029/2011JB008763.[AGU] Görgün, E., A. Zang, M. Bohnhoff, C. Milkereit, and G. Dresen (2009), Analysis of Izmit aftershocks 25 days before the November 12th 1999 Düzce earthquake, Turkey, Tectonophysics, 474, 507–515, doi:10.1016/j.tecto.2009.04.027.[CrossRef] Kanamori, H., and G. S. Stewart (1978), Seismological aspects of the Guatemala earthquake of February 4, 1976, J. Geophys. Res., 83, 3427–3434, doi:10.1029/JB083iB07p03427.[AGU] Lanari, R., et al. (2010), Surface displacements associated with the L'Aquila 2009 Mw 6.3 earthquake (central Italy): New evidence from SBAS-DInSAR time series analysis, Geophys. Res. Lett., 37, L20309, doi:10.1029/2010GL044780.[AGU] Lei, X. (2003), How do asperities fracture? An experimental study of unbroken asperities, Earth Planet. Sci. Lett., 26, 247–258. Lucente, F. P., P. De Gori, L. Margheriti, D. Piccinini, M. Di Bona, C. Chiarabba, and N. Piana Agostinetti (2010), Temporal variation of seismic velocity and anisotropy before the 2009 MW 6.3 L'Aquila earthquake, Italy, Geology, 38(11), 1015–1018, doi:10.1130/G31463.1.[CrossRef] Margheriti, L., et al. (2011), Rapid response seismic networks in Europe: Lessons learnt from the L'Aquila earthquake emergency, Ann. Geophys., 54, 392–399, doi:10.4401/ag-4953.[CrossRef] Mori, J., and R. E. Abercrombie (1997), Depth dependence of earthquake frequency-magnitude distributions in California: Implications for rupture initiation, J. Geophys. Res., 102, 15,081–15,090, doi:10.1029/97JB01356.[AGU] Narteau, C., S. Byrdina, P. Shebalin, and D. Schorlemmer (2009), Common dependence on stress for the two fundamental laws of statistical seismology, Nature, 462(7273), 642–645, doi:10.1038/nature08553.[CrossRef] Nuannin, P., O. Kulhanek, and L. Persson (2005), Spatial and temporal b-value anomalies preceding the devastating off coast of NW Sumatra earthquake of December 26, 2004, Geophys. Res. Lett., 32, L11307, doi:10.1029/2005GL022679.[AGU] Pino, N. A., and F. Di Luccio (2009), Source complexity of the 6 April 2009 L'Aquila (central Italy) earthquake and its strongest aftershock revealed by elementary seismological analysis, Geophys. Res. Lett., 36, L23305, doi:10.1029/2009GL041331.[AGU] Ruff, L. J. (1992), Asperity distributions and large earthquake occurrence in subduction zones, Tectonophysics, 211(1–4), 61–83, doi:10.1016/0040-1951(92)90051-7.[CrossRef] Schorlemmer, D., and S. Wiemer (2005), Microseismicity data forecast rupture area, Nature, 434, 1086, doi:10.1038/4341086a.[CrossRef] Schorlemmer, D., S. Wiemer, and M. Wyss (2005), Variations in earthquake-size distribution across different stress regimes, Nature, 437(7058), 539–542, doi:10.1038/nature04094.[CrossRef] Shi, Y., and B. A. Bolt (1982), The standard error of the magnitude-frequency b-value, Bull. Seismol. Soc. Am., 72, 1677–1687. Smith, W. H. F., and P. Wessel (1990), Gridding with continuous curvature splines in tension, Geophysics, 55, 293–305. Sobiesiak, M., U. Meyer, S. Schmidt, H.-J. Gotze, and C. M. Krawczyk (2007), Asperity generating upper crustal sources revealed by b-value and isostatic residual anomaly grids in the area of Antofagasta, Chile, J. Geophys. Res., 112, B12308, doi:10.1029/2006JB004796.[AGU] Trasatti, E., C. Kyriakopoulos, and M. Chini (2011), Finite element inversion of DInSAR data from the Mw 6.3 L'Aquila earthquake, 2009 (Italy), Geophys. Res. Lett., 38, L08306, doi:10.1029/2011GL046714.[AGU] Wiemer, S., and K. Katsumata (1999), Spatial variability of seismicity parameters in aftershock zones, J. Geophys. Res., 104, 13,135–13,151, doi:10.1029/1999JB900032.[AGU] Wiemer, S., and M. Wyss (1997), Mapping the frequency–magnitude distribution in asperities: An improved technique to calculate recurrence times?, J. Geophys. Res., 102, 15,115–15,128, doi:10.1029/97JB00726.[AGU] Wiemer, S., and M. Wyss (2000), Minimum magnitude of complete reporting in earthquake catalogs: Examples from Alaska, the western United States, and Japan, Bull. Seismol. Soc. Am., 90, 859–869, doi:10.1785/0119990114.[CrossRef] Wiemer, S., M. Gerstenberger, and E. Hauksson (2002), Properties of the aftershock sequence of the 1999 Mw 7.1 Hector Mine earthquake: Implications for aftershock hazard, Bull. Seismol. Soc. Am., 92(4), 1227–1240, doi:10.1785/0120000914.[CrossRef] Wyss, M., D. Schorlemmer, and S. Wiemer (2000), Mapping asperities by minima of local recurrence time: The San Jacinto-Elsinore fault zones, J. Geophys. Res., 105, 7829–7844, doi:10.1029/1999JB900347.[AGU] Wyss, M., C. G. Sammis, R. M. Nadeau, and S. Wiemer (2004), Fractal dimension and b-value on creeping and locked patches of the San Andreas fault near Parkfield, California, Bull. Seismol. Soc. Am., 94(2), 410–421, doi:10.1785/0120030054.[CrossRef] Zhang, H. M., and X. F. Chen (2006), Dynamic rupture on a planar fault in three-dimensional half-space—II. Validations and numerical experiments, Geophys. J. Int., 167, 917–932, doi:10.1111/j.1365-246X.2006.03102.x.[CrossRef] Zhao, Y. Z., and Z. L. Wu (2008), Mapping the b-values along the Longmenshan fault zone before and after the 12 May 2008, Wenchuan, China, Ms 8.0 earthquake, Nat. Hazards Earth Syst. Sci., 8, 1375–1385, doi:10.5194/nhess-8-1375-2008.[CrossRef]en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.relation.issn0094-8276en
dc.relation.eissn1944-8007en
dc.contributor.authorDe Gori, P.en
dc.contributor.authorLucente, F. P.en
dc.contributor.authorLombardi, A. M.en
dc.contributor.authorChiarabba, C.en
dc.contributor.authorMontuori, C.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0001-8160-0849-
crisitem.author.orcid0000-0002-8717-1720-
crisitem.author.orcid0000-0002-8326-7135-
crisitem.author.orcid0000-0002-8111-3466-
crisitem.author.orcid0000-0001-8079-8451-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Main_Paper.pdfMain article5.75 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

10
checked on Feb 10, 2021

Page view(s)

315
checked on Mar 27, 2024

Download(s) 20

528
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric