Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorallBruno, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallMattia, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallAloisi, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallPalano, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallCannavò, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallHolt, W. E.; Department of Geosciences, State University of New York at Stony Brooken
dc.description.abstractWe analyze the kinematic and crustal deformations of Mt. Etna from 2003 to 2008 as imaged by the Mt. Etna continuous GPS (CGPS) network (Etna@net). Through a careful analysis of GPS time series, six coherent phases of crustal deformations have been identified, three inflation phases and three deflation phases, superimposed on a major inflation of the volcanic edifice since 2001. The inversions of GPS velocities have enabled: 1) a better understanding of the evolution of the volcanic sources acting beneath the volcano; 2) analysis of the strain rate patterns; and 3) a delineation of potential coupling between volcanic sources and the observed ground deformations. The modelling of the pressure sources has shown a separation between inflation and deflation sources. The deflation sources show an upward migration, from 5.5 toward 2.0 km (b.s.l.), while the inflation sources are located within 5.5 and 4.0 km (b.s.l.). Our results indicate that the kinematic and ground deformations of the mid-upper eastern flank are driven by the interplay between the effect of the magmatic sources and a south-eastward motion. Furthermore, clockwise rotations have been detected that prevailed over the eastern motion of the flank during the inflation phase preceding the 2004-2005 and 2006 eruptions. Finally, the accordance between the higher geodetic shear strain rates and the area with the highest seismic energy release shows that measured geodetic shear strain rates can provide useful information on the potential occurrence of seismic activity.en
dc.description.sponsorshipOsservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia,Catania, Italy. Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York, USA.en
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/117 (2012)en
dc.subjectMt. Etna ground deformationsen
dc.subjectVolcano monitoringen
dc.subjectStrain rate analysisen
dc.subjectVolcanic source modellingen
dc.titleGround deformations and volcanic processes as imaged by CGPS data at Mt. Etna (Italy) between 2003 and 2008en
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformationsen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.relation.referencesAiuppa, A., A. Cannata, F. Cannavò, G. Di Grazia, F. Ferrari, G. Giudice, S. Gurrieri, M.Liuzzo, M. Mattia, P. Montalto, D. Patanè, and G. Puglisi (2010), Patterns in the recent 2007-2008 activity of Mount Etna volcano investigated by integrated geophysical and geochemical observations, Geochem. Geophys. Geosyst., 11, Q09008, doi:10.1029/2010/2010GC003168. Allard, P., B. Behncke, S. D’Amico, M. Neri, and S. Gambino (2006), Mount Etna 1993-2005: Anatomy of an evolving eruptive cycle, Earth Sci. Rev., 78, 85-114, doi:10.1016/j.earscirev.2006.04.002. Aloisi, M., Bonaccorso, A., Gambino, S., Mattia, M., and G. Puglisi (2003), Etna 2002 eruption imaged from continuous tilt and GPS data, Geophys. Res. Lett., 30(23), 2214, doi:10.1029/2003GL018896. Aloisi, M., O. Cocina, G. Neri, B. Orecchio, and E. Privitera, (2002), Seismic tomography of the crust underneath the Etna volcano, Sicily, Physics of the Earth and Planetary Interiors, 134, 139-155. Aloisi, M., A. Bonaccorso, F. Cannavò, S. Gambino, M. Mattia, G. Puglisi and E. Boschi (2009), A new dyke intrusion style for the Mount Etna May 2008 eruption modelled through continuous tilt and GPS data, Terra Nova, 21, 316-321, doi:10.1111/j.1365-3121.2009.00889.x. Aloisi, M., M. Mattia, C. Ferlito, M. Palano, V. Bruno, and F. Cannavò (2011a), Imaging the multi-level magma reservoir at Mt. Etna volcano (Italy), Geophys. Res. Lett., doi:10.1029/2011GL048488. Aloisi, M., Mattia M., Monaco C., and Pulvirenti F. (2011b), Magma, faults, and gravitational loading at Mount Etna: The 2002–2003 eruptive period, J. Geophys. Res., 116, B05203, doi:10.1029/2010JB007909. Altamimi, Z., X. Collilieux, J. Legrand, B. Garayt, and C. Boucher (2007), ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters, J. Geophys. Res., 112, B09401, doi:10.1029/2007JB004949. Andronico, , D., S. Branca, S. Calvari, M. R. Burton, T. Caltabiano, R. A. Corsaro, P. Del Carlo, G. Garfì, L. Lodato, L. Miraglia, F. Murè, M. Neri, E. Pecora, M. Pompilio, G. Salerno and L. Spampinato (2005), A multi-disciplinary study of the 2002-2003 Etna eruption: insights for a complex plumbing system, Bull. Volcanol., 67, 314-330. Andronico, D., A. Cristaldi, and S. Scollo (2008), The 4-5 September 2007 lava mountain at South-East Crater of Mt Etna, Italy, J. Volcanol. Geotherm. Res.,173,325-328. Argnani, A., and C. Bonazzi (2005), Tectonics of Eastern Sicily Offshore, Tectonics, 24, TC4009, doi:10.1029/2004TC001656. Azzaro, R. (1997), Seismicity and active tectonics along the Pernicana Fault, Mt. Etna (Italy), Acta Volcanol., 9, 7-14. Azzaro, R. (1999), Earthquake surface faulting at Mount Etna volcano (Sicily) and implications for active tectonics, J. Geodynamics, 28, 193-213. Azzaro, R. (2004), Seismicity and active tectonics in the etna region: constraints for a seismotectonic model, in Mt Etna Volcano Laboratory, Geophys. Monogr. Ser., 143:205-220 edited by A. Bonaccorso, S. Calvari, M. Coltelli, C. Del Negro, and S. Falsaperla. Beavan, J., and J. Haines (2001), Contemporary horizontal velocity and strain rate fields of the Pacific-Australian plate boundary zone through New Zealand, J. Geophys. Res., 106, 741-770. Behncke, B., S. Falsaperla, and E. Pecora (2009), Complex magma dynamics at Mount Etna revealed by seismic, thermal, and volcanological data, J. Geophys. Res., 114, B03211, doi:10.1029/2008JB005882. Behncke, B., and M. Neri (2003), Cycles and trends in the recent eruptive behaviour of Mt. Etna (Italy), J. Earth Sci., 40, 1405-1411, doi:10.1139/E03-052. Bianca, M., C. Monaco, L. Tortorici, and L. Cernobori (1999), Quaternary normal faulting in southeastern Sicily (Italy): a seismic source for the 1693 large earthquake, Geophys. J. Int., 139, 370-394. Bonaccorso, A., M. Aloisi, and M. Mattia, (2002), Dike emplacement forerunning the Etna July 2001 eruption modeled through continuous tilt and GPS data, Geophys. Res. Lett., 29, 13, 10.1029/2001GL014397. Bonaccorso, A., A. Bonforte, F. Guglielmino, M. Palano, and G. Puglisi (2006), Composite ground deformation pattern forerunning the 2004-2005 Mount Etna eruption, J. Geophys. Res., 111, B12207, doi:10.1029/2005JB004206. Bonaccorso A., S. Cianetti, C. Giunchi, E. Trasatti, M. Bonafede, and E. Boschi (2005), Analytical and 3D numerical modeling of Mt. Etna (Italy) volcano inflativo, Geophys. J. Int. 163 (2), 852–862. doi:10.1111/j.1365-246X.2005.02777.x. Bonaccorso, A., S. D'Amico, M. Mattia, and D. Patanè (2004), Intrusive mechanisms at Mt. Etna forerunning the July-August 2001 eruption, Pure Appl. Geophys., 161, 1469-1487. Bonaccorso, A., and P. M. Davis (2004), Modeling of ground Deformation Associated with Recent Lateral Eruptions: Mechanics of Magma Ascent and Intermediate Storage at Mt. Etna, in Etna: Volcano Laboratory, Monograph of American Geophysical Union, 143, pp. 293-306. Bonaccorso, A, and D. Patanè (2001), Shear response to an intrusive episode at Mt. Etna volcano (January 1998) inferred through seismic and tilt data, Tectonophysics, 334, 61. Bonafede, M., M., Dragoni, and F. Quareni (1986), Displacement and stress fields produced by a centre of dilation and by a pressure source in a viscoelastic half-space: application to the study of ground deformation and seismic activity at Campi Flegrei, Italy, Geophys. J. R. Astron. Soc. 87, 455–485. Bonanno, A., M. Palano, E. Privitera, S. Gresta, ang G. Puglisi (2011), Magma intrusion mechanisms and redistribution of seismogenic stress at Mt. Etna volcano (1997-1998), Terra Nova, 00, 1–10, doi:10.1111/j.1365-3121.2011.01019.x. Bonforte, A., A. Bonaccorso, G. Francesco, M. Palano, and G. Puglisi (2008), Feeding system and magma storage beneath Mt. Etna as revealed by recent inflation/deflation cycles, J. Geophys. Res., 113, B05406, doi:10.1029/2007JB005334. Bonforte, A., F. Guglielmino, M. Coltelli, A. Ferretti, and G. Puglisi (2011), Structural assessment of Mount Etna volcano from Permanent Scatterers analysis, Geochem. Geophys. Geosyst., 12, Q02002, doi:10.1029/2010GC003213. Bonforte, A., and G. Puglisi (2003), Magma uprising and flank dynamics on Mount Etna volcano, studied using GPS data (1994–1995), J. Geophys. Res., 108, 2153, doi:10.1029/2002JB001845. Borgia, A., L. Ferrari, and G. Pasquarè (1992), Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna, Nature, 357, 231-235. Borgia, A., R. Lanari, E. Sansosti, M. Tesauro, P. Berardino, G. Fornaro, M. Neri, and J. B. Murray (2000), Actively growing anticlines beneath Catania from distal motion of Mount Etna’s decollement measured by SAR interferometry and GPS, Geophys. Res. Lett., 27, 3409-3412. Branca, S., P. Del Carlo (2005), Types of eruptions of Etna volcano AD 1670-2003: implications of short-term eruptive activity, Bull. Volcanol., 67, 732-742, doi:10.1007/s00445-005-0412-z. Burollet, P. F., J. M. Muginot, and P. Sweeney (1978), The geology of the Pelagian Block: The margins and basins of southern Tunisia and Tripolitania, in Ocean Basins and margins, edited by A:E:M. Nairn et al., pp. 331-359, The western Mediterranean, Plenum Press, New York. Burton, M. R., M. Neri, D. Andronico, St. Branca, T. Caltabiano, S. Calvari, R. A. Corsaro, P. Del Carlo, G. Lanzafame, L. Lodato, L. Miraglia, G. salerno, and L. Spampinato (2005), Etna 2004–2005: An archetype for geodynamically-controlled effusive eruptions, Geophys. Res. Lett., 32, L09303, doi:10.1029/2005GL022527. Corsaro, R. A., and M. Pompilio (2004), Dynamics of magma at Mount Etna, in Bonaccorso, A., et al., eds., Mt. Etna Volcano Laboratory, vol. 143, Washington, D.C., American Geophysical Union, pp. 91-110. Davis, P. M., (1986), Surface Deformation Due to Inflation of an Arbitrarily Oriented Triaxial Ellipsoidal Cavity in an Elastic Half-Space, With Reference to Kilauea Volcano, Hawaii, J. Geophys. Res., 91(B7), 7429–7438, doi:10.1029/JB091iB07p07429. Dixon, T. H., M. M. Miller, F. Farina, H. Wang, and D. Johnson (2000), Present-day motion of Sierra Nevada block and some tectonic implications for the Basin and Range province: North America Cordillera, Tectonics, 19, 1-24, doi:10.1029/1998TC001088. Efron, B., (1982), The Jackknife, Bootstrap and Other Resampling Plans, Society for Industrial and Applied Mathematics, Philadelphia. Ellis, M., and G. C. P. King (1991), Structural control of flank volcanism in continental rifts, Science, 254, 839-842. Ferlito, C., M. Coltorti, R. Cristofolini and P. P. Giacomoni (2008), The contemporaneous emission of low-K and high-K trachybasalts and the role of the NE Rift during the 2002 eruptive event, Mt. Etna, Italy, Bull. Volcanol., doi:10.1007/s00445-008-0243-9. Ferlito C. and G. Lanzafame, (2010), The role of supercritical fluids in the potassium enrichment of magmas at Mount Etna volcano (Italy), Lithos, 119, 642-650, doi:10.1016/j.lithos.2010.08.006. Ferlito, C., M. Viccaro, E. Nicotra, R. Cristofolini (2011), Regimes of magma recharge and their control on the eruptive behaviour during the period 2001-2005 at Mt. Etna volcano, Bull. Volcanol., doi:10.1007/s00445-011-0537-1, in press.Froger, J. L., O. Merle, and P. Briole (2001), Active spreading and regional extension at Mt. Etna imaged by SAR interferometry, Earth Planet. Sci. Lett., 148, 245-258. Ghisetti, F., and L. Vezzani (1981), Contribution of the structural analysis to understanding the geodynamic evolution of the Calabrian Arc (Southern Italy), J. Struct. Geol., 3(4), 371-381. Gillot, P. Y., G. Kieffer, and R. Romano (1994), The evolution of Mount Etna in the light of potassium-argon dating, Acta Vulcanologica, 5, 81-87. Goldberg, D. E., (1989), Genetic Algorithms in Search, in Optimization and Machine Learning. Kluwer Academic Publishers, Boston, MA. Groppelli, G., and A. Tibaldi (1999), Control of rock rheology on deformation style and slip-rate along the active Pernicana Fault, Mt. Etna, Italy, Tectonophysics, 305, 521-537. Guest, J. E., and J. B. Murray (1979), An Analysis of hazard from Mount Etna volcano, J. Geol. Soc. (Lond.), 136, 347-354. Gutenberg, B., and Richter, C. F. (1956) Earthquake magnitude, intensity, energy and acceleration, Bull. Seismol. Soc. Am., 46, 105-145. Haines, A. J., and W. E. Holt (1993), A procedure for obtaining the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data, J. Geophys. Res. 98, 12,057-12,082. Haines, A. J., A. Jackson, W. E. Holt, and D. C. Agnew (1998), Representing distributed deformation by continuous velocity fields, Sci. Rept. 98/5, Inst. of Geol. and Nucl. Sci., Wellington, New Zeland. Herring, T.A. (2004), GLOBK: Global Kalman filter VLBI and GPS analysis program, Release 10.2, Mass. Inst. Of Technol., Cambridge. Hirn, A., A. Nercessian, M. Sapin, F. Ferrucci and G. Wittlinger (1991), Seismic heterogeneity of Mt. Etna: structure and activity, Geophys. J. Int., 105, 139-153. Hirn, A., R. Nicolich, J. Gallart, M. Laigle, L. Cernobori, and ETNASEIS Scientific Group (1997), Earth Planet. Sci. Lett., 148, 171-191.Holt, W. E., and A. J. Haines (1995), The kinematics of northern South Islands, New Zealand, determined from geologic strain rates, J. Geophys. Res., 100, 17,991-18,010. Imbò, G. (1928), Sistemi eruttivi etnei, Bull. Volcanol., Ser. I 5, 89-119. King, R. W., and Y. Bock (2004), Documentation of the MIT GPS Analysis Software: GAMIT, release 10.2, Mass. Inst. Of Technol, Cambridge. Kreemer, C., W. E. Holt, S. Goes and R. Govers (2000), Active deformation in eastern Indonesia and the Philippines from GPS and seismicity data, J. Geophys. Res., 105, B1, 663-680. Larh, J.C. (1989), HYPOELLIPSE/VERSION 2.0: A computer program for determining local earthquake hypocentral parameters, magnitude and first motion pattern, U.S. Geol. Surv., Open-File Rep. 89/116, 81 pp. Lewis, R. M., and V. Torczon (1999), Pattern search algorithms for bound constrained minimization, SIAM J. Optim., 9 (4), 1082–1099. Lo Giudice, E., G. Patanè, R. Rasà, and R. Romano (1982), The structural frame work of Mount Etna, Mem. Soc. Geol. It., 23, 125-158. Lundgren, P., F. Casu,, M. Manzo, A. Pepe, P. Berardino, E. Sansosti, and R. Lanari (2004), Gravity and magma spreading of Mount Etna volcano revealed by radar interferometry, Geophys. Res. Lett,, L04602, doi:10.1029/2003GL018736. Maaz, R., W. Ullmann, and V. Kbrnik (1974), Map of the seismic energy flux: example of western Greece, Pageoph, 112, 5-9. Mao, A., C. G. A. Harrison, and T. H. Dixon (1999), Noise in GPS coordinate time series, J. Geophys. Res., 104, B2, 2797-2816. Makris, J., R. Nicolich, and W. Weigel (1986), A seismic study in the western Ionian sea, Ann. Geophys., 6B, 665-678. Mastin, L. G., E. Roeloffs, N. M.Beeler, and J. E. Quick (2008), Constraints on the size, overpressure, and volatile content of the Mount St. Helens Magma system from geodetic and dome growth measurements during the 2004-2006+ Eruption, in A Volcano Rekindled: The Renewed Eruption of Mount St. Helens, edited by D. R. Sherrod, W. E. Scott, and P. H. Stauffer, U.S. Geol. Surv. Prof. Pap., 1750, 461-488. Mastin, L. G., M. Lisowski, E. Roeloffs, and N. Beeler (2009), Improved constraints on the estimated size and volatile content of the Mount St. Helens magma system from the 2004-2008 history of dome growth and deformation, Geophys. Res. Lett,, 36, L20304, doi:10.1029/2009GL039863. Mattia, M., M. Palano, V. Bruno, F. Cannavò (2009), Crustal motion along the Calabro-Peloritano Arc as imaged by twelve years of measurements on a dense GPS network, Tectonophysics, 476, 528-537. Mattia, M., V. Bruno, F. Cannavò, and M. Palano (2011), Evidences of a contractional pattern along the northern rim of the Hyblean Plateau (Sicily, Italy) from GPS data, Geol. Acta, in press. McCaffrey, R., A. I. Qamar, R. W. King, R. Wells, G. Khazaradze, C. A. Williams, C. W. Stevens, J. J. Vollick, and P. C. Zwick (2007), Fault locking, Block Rotation and Crustal Deformation in the Pacific Northwest, Geophys. J. Int., 169, p. 1315-1340, doi:10.1111/j.1365-246X.2007.03371.x, 2007.McGuire, W. J., C. R. J. Kilburn, and J. B., Murray (1995), Monitoring Active Volcanoes, Strategies, Procedures, and Techniques, UCL Press, London, pp. 421. McGuire, W. J., J. L. Moss, S. J. Saunders, and I. S. Stewart (1996), Dike-induced rifting and edifice instability at Mount Etna, in Etna: fifteen years, Gravestock, P. J. and W. J. McGuire Eds., Cheltenham and Gloucester Spec. Publ., pp. 20-24. McGuire, W. J., and A. D. Pullen (1989), Location and orientation of eruptive fissures and feeder-dykes at Mount Etna; influence of gravitational and regional tectonic stress regimes, J. Volcanol. Geotherm. Res., 38, 325-344. McTigue, D. F (1987), Elastic stress and deformation near a finite sphericalmagma body: resolution of the point source paradox., J. Geophys. Res., 92, 12931–12940, doi: 10.1029/JB092iB12p12931. Mogi, K. (1958), Relations between the eruptions of various volcanoes and the deformations of the ground surface around them, Bull. Earthquake Res. Inst. Univ. Tokyo, 36, 99 – 134. Monaco, C., S. Catalano, O. Cocina, G. De Guidi, C. Ferlito, S. Gresta, C. Musumeci, and L. Tortorici (2005), Tectonic control on the eruptive dynamics at Mt. Etna Volcano (Sicily) during the 2001 and 2002-2003 eruptions, J. Volcanol. Geotherm. Res., 144, 211-233. Monaco, C., G. De Guidi, and C. Ferlito (2010), The morphotectonic map of Mt. Etna, Ital. J. Geosci. (Boll. Soc. Geol. It.), 129, 3, 408-428, doi:10.3301/IJG.2010.11). Monaco, C., L. Petronio, and M. Romanelli (1995), Tettonica estensionale nel settore orientale del Monte Etna (Sicilia): dati morfotettonici e sismici, Studi Geologici Camerti, Volume Speciale 1995/2. Monaco, C., P. Tappoiner, L. Tortorici, and P. Y. Gillot (1997), Late Quaternary slip rates on the Acireale-Piedimonte normal faults and tectonic origin of Mt. Etna (Sicily), Earth Planet. Sci. Lett.,147, 125-139. Murru M., C. Montuori, M. Wyss, and E. Privitera (1999), The locations of magma chambers at Mt. Etna, Italy, mapped by b-values, Geophys. Res. Lett., 26 (16), 2553–2556. Neri, M., V. Acocella, and B. Behncke (2004), The role of the Pernicana Fault System in the spreading of Mount Etna (Italy) during the 2002-2003 eruption, Bull. Volcanol., 66, 417-430. Neri, M. and V. Acocella (2006a), The 2004–2005 Etna eruption: Implications for flank deformation and structural behaviour of the volcano, J. Volcanol. Geotherm. Res., 158, 195-206, doi:10.1016/j.jvolgeores.2006.04.022. Neri, M., B. Behncke, M. Burton, G. Galli, S. Giammanco, E. Pecora, E. Privitera, and D. Reitano (2006b), Continuous soil radon monitoring during the July 2006 Etna eruption, Geophys. Res. Lett., 33, L24316, doi:10.1029/2006GL028394. Nicholich, R., M. Laigle, A. Hirn, L. Cernobori, and J. Gallart (2000), Crustal structure of the Ionian margin of Sicily: Etna volcano in the frame of regional evolution, Tectonophysics, 329, 121-139. Palano, M., S. Gresta, and G. Puglisi (2009), Time-dependent deformation of the eastern flank of Mt. Etna: After-slip or viscoelationastic relaxation?, Tectonophysics, 473, 300-311. Palano, M., G. Puglisi, and S. Gresta (2008), Ground deformation patterns at Mt. Etna from 1993 to 2000 from joint use of InSAR and GPS techniques, J. Volcanol. Geotherm. Res., 169, doi:10.1016/j.jvolgeores.2007.08.014. Palano, M., M. Rossi, F. Cannavò, V. Bruno, M. Aloisi, D. Pellegrino, M. Pulvirenti, G. Siligato, M. Mattia, (2010), Etn@ref: a geodetic reference frame for Mt. Etna GPS networks, Annals of Geophys., 53, 4, doi: 10.4401 / ag-4879. Patanè, D., M. Mattia, and M. Aloisi (2005), Shallow intrusive processes during 2002-2004 and current volcanic activity on Mt. Etna, Geophys. Res. Lett., 32, L06302, doi:10.1029/2004GL021773. Patanè D., and E. Privitera, Seismicity related to 1989 and 1991-93 Mt. Etna (Italy) eruptions: kinematic constraints by FPS analysis, J. Volcanol. Geotherm. Res., 109, 77-98, 2001. Puglisi, G., P. Briole, and A. Bonforte (2004), Twelve years of ground deformation studies on Mt. Etna volcano based on GPS surveys, in Mt. Etna: Volcano Laboratory, Bonaccorso, A., S. Calvari, M. Coltelli, C. Del Negro, S. Falsaperla (Eds.), AGU Geophysical Monograph Series, vol. 143, pp. 321-341. Puglisi, G., A. Bonforte, A. Ferretti, F. Guglielmino, M. Palano, and C. Prati (2008), Dynamics of Mount Etna before, during, and after the July–August 2001 eruption inferred from GPS and differential synthetic aperture radar interferometry data, J. Geophys. Res., 113, B06405, doi:10.1029/2006JB004811. Rasà, R., R. Azzaro, and O. Leonardi (1996), Aseismic creep on faults and flank instability at Mt. Etna volcno, in Volcano Instability on the Earth and Other Planets, McGuire, W. J., A. P. Jones, and J. Neuberg (Eds.), Geol. Soc. London Spec. Publ., 110, pp. 179-192. Rust, D., B. Behncke, M. Neri, and A. Ciocanel (2005), Nested zones of instability in the Mount Etna volcani edifice, Italy, J. Volcanol. Geotherm. Res., 144, 137-153. Scarpa, R., and R. I. Tilling, Monitoring and mitigation of volcano hazards, Springer Berlin, pp. 841, 1996. Shen, Z. K., D. D. Jackson, and B. X. Ge (1996), Crustal deformation across and beyond the Los Angeles basin from geodetic measurements, J. Geophys. Res., 101(B12), 27,957–27,980, doi:10.1029/96JB02544. Solaro, G., V. Acocella, S. Pepe, J. Ruch, M. Neri, and E. Sansosti (2010), Anatomy of an unstable volcano from InSAR: Multiple processes affecting flank instability at Mt. Etna, 1994-2008, J. Geophys. Res., 115, B10405, doi:10.1029/2009JB000820. Tiampo K. F., J. B. Rundle, J. Fernandez, and J. O. Langbein (2000), Spherical and ellipsoidal volcanic sources at Long Valley caldera, California, using a genetic algorithm inversion technique, J. Volcanol. Geotherm. Res., 102, 189-206, doi:10.1016/S0377-0273(00)00185-2. Wadge, G., G. P. L. Walker, and J. E. Guest (1975), The output of the Etna volcano, Nature, 213, 484-485. Williams, C. A., and G. Wadge (1998), The effects of topography on magma chamber deformation models: Application to Mt. Etna and radar interferometry, Geophys. Res. Lett., 25 (10), 1549-1552. Williams, C. A., and G. Wadge (2000), An accurate and efficient method for including the effects of topography in three-dimensional elastic models of ground deformation with applications to radar interferometry, J. Geophys. Res., 105(B4), 8103–8120, doi:10.1029/1999JB900307. Yang, X. M., P. M. Davis, and J. H. Dieterich (1988), Deformation from inflation of a dipping finite prolate spheroid in an elastic half-space as a model for volcanic stressing, J. Geophys. Res., 93, 4249–4257, doi:10.1029/JB093iB05p04249.en
dc.description.obiettivoSpecifico1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attiveen
dc.description.journalTypeJCR Journalen
dc.contributor.authorBruno, V.en
dc.contributor.authorMattia, M.en
dc.contributor.authorAloisi, M.en
dc.contributor.authorPalano, M.en
dc.contributor.authorCannavò, F.en
dc.contributor.authorHolt, W. E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentDepartment of Geosciences, State University of New York at Stony Brooken
item.fulltextWith Fulltext-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia- Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia- Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia- Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia- Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia- Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia- of Geosciences, State University of New York at Stony Brook- Nazionale di Geofisica e Vulcanologia- Nazionale di Geofisica e Vulcanologia- Nazionale di Geofisica e Vulcanologia- Nazionale di Geofisica e Vulcanologia- Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Bruno et al., 2012.pdfMain Article20.35 MBAdobe PDF
Show simple item record


Last Week
Last month
checked on Feb 7, 2021

Page view(s) 50

Last Week
Last month
checked on Jul 22, 2021


checked on Jul 22, 2021

Google ScholarTM