Please use this identifier to cite or link to this item:
http://hdl.handle.net/2122/8340
DC Field | Value | Language |
---|---|---|
dc.contributor.authorall | Mosca, I.; Department of Earth and Environmental Sciences, LMU, Munich, Germany | en |
dc.contributor.authorall | Console, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia | en |
dc.contributor.authorall | D'Addezio, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia | en |
dc.date.accessioned | 2012-10-22T10:59:50Z | en |
dc.date.available | 2012-10-22T10:59:50Z | en |
dc.date.issued | 2012-09-05 | en |
dc.identifier.uri | http://hdl.handle.net/2122/8340 | en |
dc.description.abstract | Because paleoseismology can extend the record of earthquakes back in time up to several millennia, it represents an opportunity to study how earthquakes recur through time and thus to provide innovative contributions to seismic hazard assessment. Based on a database of recurrence from paleoseismology we collected 19 sequences with 5 up to 14 dated events on a single fault. By using the age of the paleoearthquakes, with their associated uncertainty, and the historical earthquakes, we tested the null hypothesis that the observed inter-event times come from a uniform random distribution (Poisson model). We used the concept of likelihood for a speci!c sequence of events under a given occurrence model. The difference dlnL of the likelihoods estimated under two hypotheses gives an indication of which between the two hypotheses !ts better the observations. To take into account the uncertainties, we used a Monte Carlo procedure computing the average and the standard deviation of dlnL for 1000 inter-event sets by choosing the occurrence time of each event within the limits of uncertainty and estimating the probability that a value equal to or larger than an observed dlnL comes by chance from a Poisson distribution of inter-event times. These tests were carried out for the Log-normal, Gamma, Weibull, Double-exponential and Brownian Passage Time (BPT) distributions. Our results show that a renewal model, associated with a time dependent hazard, and some kind of predictability of the next large earthquake on a fault is signi!cantly better than a plain time-independent Poisson model only for four, out of the 19 sites examined in this study. The lack of regularity in the earthquake occurrence for more than 30% of the examined faults can be explained either by the large uncertainties in the estimate of paleoseismological occurrence times or by physical interaction between neighboring faults. | en |
dc.language.iso | English | en |
dc.publisher.name | Elsevier Science Limited | en |
dc.relation.ispartof | Tectonophysics | en |
dc.relation.ispartofseries | / 564–565 (2012 ) | en |
dc.subject | Renewal model | en |
dc.subject | Seismic recurrence | en |
dc.subject | Statistical model | en |
dc.subject | Paleoseismology | en |
dc.title | Renewal models of seismic recurrence applied to paleoseismological and historical observations | en |
dc.type | article | en |
dc.description.status | Published | en |
dc.type.QualityControl | Peer-reviewed | en |
dc.description.pagenumber | 54-67 | en |
dc.identifier.URL | http://www.sciencedirect.com/science/article/pii/S0040195112003538 | en |
dc.subject.INGV | 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous | en |
dc.identifier.doi | 10.1016/j.tecto.2012.06.028 | en |
dc.relation.references | Atwater, B.F., Hemphill-Haley, E., 1997. Recurrence intervals for great earthquakes of the past 3,500years at Northeastern Willapa Bay, Washington. U.S. G. S. Professional Paper 1576. 108pp. Berryman, K.R., Beanland, S., Wesnousky, S., 1998. Paleoseismicity of the Rotoitipakau Fault Zone, a complex normal fault in the Taupo Volcanic Zone, New Zealand. New Zealand Journal of Geology and Geophysics 41, 449–465. Biasi, G.P., Weldon, R.J., Fumal, T.E., Seitz, G.G., 2002. Paleoseismic event dating and the conditional probability of large earthquakes on the southern San Andreas Fault, California. Bulletin of the Seismological Society of America 92, 2761–2781. Collier, R., Pantosti, D., D'Addezio, G., De Martini, P.M., Masana, E., Sakellariou, D., 1998. Paleoseismicity of the 1981 Corinth earthquake fault: seismic contribution to theextensional strain in Central Greece and implications for the seismic hazard. Journal of Geophysical Research 103, 30001–30019. Console, R., 2001. Testing earthquake forecast hypothesis. Tectonophysics 338, 261–268. Console, R., Pantosti, D., D'Addezio, G., 2002. Probabilistic approach to earthquake prediction. Annals of Geophysics 45, 435–449. Console, R., Murru, M., Falcone, G., 2010. Retrospective forecasting of M$4.0 earthquakes in New Zealand. Pure and Applied Geophysics 167, 693–707, http://dx.doi.org/10.1007/ s00024-010-0068. Coordinating Committee for Earthquake Prediction, 2001. Report, pp. 20–21 (in Japanese). Ellsworth, W.L., Matthews, M.V., Nadeau, R.M., Nishenko, S.P., Reasenberg, P.A., 1999. A physically-based recurrence model for estimation of long-term earthquake probabilities. U.S. Geological Survey Open-File Report, pp. 99–522. Fumal, T.E., Weldon II, R.J., Biasi, G.P., Dawson, T., Seitz, G.G., Frost, W.T., Schwartz, D.P., 2002. Evidence for large earthquakes on the San Andreas fault at the Wrightwood, California, paleoseismic site: A.D. 500 to present. Bulletin of the Seismological Society of America 92, 2726–2760. Galadini, F., Galli, P., 1999. The Holocene paleoearthquakes on the 1915 Avezzano earthquake faults (Central Italy): implications for active tectonics in Central Apennines. Tectonophysics 308, 142–170. Galli, P., Bosi, V., 2002. Paleoseismology along the Cittanova fault: implications for the seismotectonic and earthquake recurrence in Calabria. Journal of Geophysical Research 107, 142–170. He, H., Ren, J., 2003. Holocene earthquakes on the Zemuhe Fault in Southwestern China. Annals of Geophysics 46 (5), 1035–1051. Jackson, D.D., Kagan, Y.Y., 1993. Reply to Nishenko and Sykes. Journal of Geophysical Research 98, 9917–9920. Kagan, Y.Y., Jackson, D.D., 1991. Seismic gap hypothesis: ten years later. Journal of Geophysical Research 96, 21419–21431. Kagan, Y.Y., Jackson, D.D., 1995. New seismic gap hypothesis: !ve years later. Journal of Geophysical Research 100, 3943–3959. Kagan, Y.Y., Jackson, D.D., 1996. Statistical tests of VAN earthquake predictions: comments and re"ections. Geophysical Research Letters 23 (11), 1433–1436. Luen, B., Stark, P.B., 2008. Testing earthquake predictions. IMS Collections, Probability and Statistics: Essays in Honor of David A. Freedman: Institute of Mathematical Statistics, 2, pp. 302–315, http://dx.doi.org/10.1214/193940307000000509. Matthews, M.V., Ellsworth, W.L., Reasenberg, P.A., 2002. Brownian model for recurrence earthquakes. Bulletin of the Seismological Society of America 92, 2233–2250. Mc Cann,W.R., Nishenko, S.P., Sykes, L.R., Krause, J., 1979. Seismic gaps and plate tectonics: seismic potential formajor boundaries. Pure and Applied Geophysics 117, 1082–1147. McCalpin, J.P., 1996. Tectonic geomorphology and Holocene paleoseismicity of the Molesworth section of the Awatere fault, South Island, New Zealand. New Zealand Journal of Geology and Geophysics 39, 33–50. Meghraoui, M., Doumaz, F., 1996. Earthquake induced "ooding and paleoseismicity of the El Asnam, Algeria, fault-related fold. Journal of Geophysical Research 101, 17617–17644. Mogi, K., 1968. Sequential occurrences of recent great earthquakes. J. Phys. Earth 16, 30–60. Nishenko, S.P., Buland, R., 1987. A generic recurrence interval distribution for earthquake Nishenko, S.P., Sykes, L.R., 1993. Comment on ‘Seismic gap hypothesis: ten years after’ by Y.Y. Kagan and D.D. Jackson. Journal of Geophysical Research 98, 9909–9916. Ota, Y., Hull, A.G., Berryman, K.R., 1991. Coseismic uplift of Holocene marine terraces in the Pakarae River area, Eastern North Island, New Zealand. Quaternary Research 35, 331–346. Pantosti, D., 2000. Earthquake recurrence through the time. Proceeding of the Hokudan International Symposium and School on Active Faulting, Awaij Island, Hyogo, Japan, 17th–26th January 2000, pp. 363–365. Pantosti, D., Schwartz, D.P., Valensise, G., 1993. Paleoseismicity along the 1980 surface rupture of the Irpinia fault: implications for earthquake recurrence in Southern Apennines, Italy. Journal of Geophysical Research 98, 6561–6577. Parsons, T., 2008. Monte Carlo method for determining earthquake recurrence parameters from short paleoseismic catalogs: example calculations. Journal of Geophysical Research 109, B03302, http://dx.doi.org/10.1029/2007JB004998. Parsons, T., Geist, E.L., 2009. Is there basis for preferring characteristic earthquakes over Gutenberg–Richter distributions on individual faults in probabilistic earthquake forecasting? Bulletin of the Seismological Society of America 99, 2012–2019. Ran, Y.K., Zhang, P.Z., Chen, L.C., 2003. Late Quaternary history of paleoseismic activity along the Hohhot segment of the Daqingshan piedmont fault in Hetao depression zone, North China. Annals of Geophysics 46 (5), 1053–1069. Reid, H.F., 1910. The Mechanics of the Earthquake, The California Earthquake of April 18, 1906, Report of the State Investigation Commission, Vol. 2. Carnegie Institution of Washington, Washington, D.C. Rhoades, D.A., Van Dissen, R.J., 2003. Estimates of the time-varying hazard of rupture of the Alpine Fault, New Zealand, allowing for uncertainties. New Zealand Journal of Geology and Geophysics 46, 479–488. Rhoades, D.A., Van Dissen, R.J., Dowrick, D.J., 1994. On the handling of uncertainties in estimating the hazard of rupture on a fault segment. Journal of Geophysical Research 99 (B7), 13701–13712. Rong, Y., Jackson, D.D., Kagan, Y.Y., 2003. Seismic gaps and earthquakes. Journal of Geophysical Research 108, http://dx.doi.org/10.1029/2002JB002334. Schwartz, D.P., Coppersmith, K.J., 1984. Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas Fault Zones. Journal of Geophysical Research 89, 5681–5698. Shimazaki, K., Nakata, T., 1980. Time-predictable recurrence model for large earthquakes. Geophysical Research Letters 7, 279–282. Sieh, K., 1978. Slip along the San Andreas fault associated with the great 1857 earthquake. Bulletin of the Seismological Society of America 68, 1421–1428. Sykes, L.R., Menke, W., 2006. Repeat times of large earthquakes: implications for earthquake mechanics and long-term prediction. Bulletin of the Seismological Society of America 96 (5), 1569–1596, http://dx.doi.org/10.1785/0120050083. Wells, D.L., Coppersmith, K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America 84, 974–1002. Wesnousky, S.G., 1994. The Gutenburg Richter or Characteristic Earthquake Distribution, which is it? Bulletin of the Seismological Society of America 84, 1940–1959. | en |
dc.description.obiettivoSpecifico | 3.2. Tettonica attiva | en |
dc.description.journalType | JCR Journal | en |
dc.description.fulltext | restricted | en |
dc.relation.issn | 0040-1951 | en |
dc.relation.eissn | 1879-3266 | en |
dc.contributor.author | Mosca, I. | en |
dc.contributor.author | Console, R. | en |
dc.contributor.author | D'Addezio, G. | en |
dc.contributor.department | Department of Earth and Environmental Sciences, LMU, Munich, Germany | en |
dc.contributor.department | Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia | en |
dc.contributor.department | Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia | en |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairetype | article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | restricted | - |
crisitem.department.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.department.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.author.dept | Department of Earth and Environmental Sciences, LMU, Munich, Germany | - |
crisitem.author.dept | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia | - |
crisitem.author.dept | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia | - |
crisitem.author.orcid | 0000-0003-4343-7774 | - |
crisitem.author.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.author.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.classification.parent | 04. Solid Earth | - |
Appears in Collections: | Article published / in press |
Files in This Item:
File | Description | Size | Format | Existing users please Login |
---|---|---|---|---|
Renewal_2012.pdf | Main article | 1.28 MB | Adobe PDF |
WEB OF SCIENCETM
Citations
4
checked on Feb 10, 2021
Page view(s) 50
222
checked on Sep 7, 2024
Download(s)
27
checked on Sep 7, 2024