Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8313
DC FieldValueLanguage
dc.contributor.authorallPappalardo, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallMastrolorenzo, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2012-10-19T13:48:02Zen
dc.date.available2012-10-19T13:48:02Zen
dc.date.issued2012en
dc.identifier.urihttp://hdl.handle.net/2122/8313en
dc.description.abstractIn recent decades, geophysical investigations have detected wide magma reservoirs beneath quiescent calderas. However, the discovery of partially melted horizons inside the crust is not sufficient to put constraints on capability of reservoirs to supply cataclysmic eruptions, which strictly depends on the chemical-physical properties of magmas (composition, viscosity, gas content etc.), and thus on their differentiation histories. In this study, by using geochemical, isotopic and textural records of rocks erupted from the high-risk Campi Flegrei caldera, we show that the alkaline magmas have evolved toward a critical state of explosive behaviour over a time span shorter than the repose time of most volcanic systems and that these magmas have risen rapidly toward the surface. Moreover, similar results on the depth and timescale of magma storage were previously obtained for the neighbouring Somma-Vesuvius volcano. This consistency suggests that there might be a unique long-lived magma pool beneath the whole Neapolitan area.en
dc.language.isoEnglishen
dc.publisher.nameNature Publishing Groupen
dc.relation.ispartofScientific Reporten
dc.relation.ispartofseries/2 (2012)en
dc.subjectmagmaen
dc.subjectcampi flegrei calderaen
dc.titleRapid differentiation in a sill-like magma reservoir: a case study from the campi flegrei calderaen
dc.typearticleen
dc.description.statusPublisheden
dc.description.pagenumberarticle 712en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrologyen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocksen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.identifier.doi10.1038/srep00712en
dc.relation.references1. De Natale, G., Troise, C., Pingue, F., Mastrolorenzo, G., Pappalardo, L., Battaglia, M. & Boschi E. The Campi Flegrei Caldera, unrest mechanisms and hazards. The Geological Society, London 269, 25–45 (2006).50. Mattey, D. P. LaserPrep, An Automatic Laser-Fluorination System forMicromass ‘‘Optima’’ or ‘‘Prism’’ Mass Spectrometers. Micromass Application Note 107, 8 pp (1997). 51. Rosi, M. & Sbrana, A. Phlegrean Fields. CNR, Quad Ric. Sci. 114, 175 pp. (1987). 52. Florio, G., Fedi, M., Cella, F. & Rapolla, A. The Campanian Plain and Phlegrean Fields, structural setting from potential field data. J Volcanol Geotherm Res. 91, 361–379 (1999). 53. Piochi, M., Pappalardo, L. & De Astis, G. Geochemical and Isotopical variation within the Campanian Comagmatic province: implications on magma source composition. Annals of Geophysics 47, 1485–1499 (2004). 2. Zollo, A. et al. Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geoph. Res. Lett. 35, L12306, doi: 10.1029/2008GL034242 (2008). 3. Pappalardo, L. & Mastrolorenzo, G. Short residence times for alkaline Vesuvius magmas in amulti-depth supply system, Evidence from geochemical and textural studies. Earth Plan. Sci. Lett. 296, 133–143 (2010). 4. Pappalardo, L., Piochi, M., D’Antonio, M., Civetta, L. & Petrini, R. Evidence for multi-stage magmatic evolution during the past 60 ka at Campi Flegrei, Italy. deduced from Sr, Nd and Pb isotope data. J. Petrol. 43(8), 1415–1434 (2002). 5. Fabbrizio, A. & Carroll, M. Experimental constraints on the differentiation process and pre-eruptive conditions in themagmatic system of Phlegraean Fields, Naples, Italy. J. Volcanol. Geotherm. Res. 171, 88–102 (2008). 6. Pappalardo, L., Ottolini, L. & Mastrolorenzo, G. The Campanian Ignimbrite, Southern Italy. geochemical zoning, insight on the generation of a super-eruption from catastrophic differentiation and fast withdrawal. Contrib. Mineral. Petrol. 156, 1–26 (2008)7. Pappalardo, L., Piochi, M. & Mastrolorenzo, G. The 3550 YR BP - 1944 AD magma-plumbing system of Somma-Vesuvius, constraints on its behavior and present state through a review of Sr-Nd isotope data. Annals of Geophysics 47, 1471–1483 (2004). 8. Bindeman, I. Oxygen Isotopes in Mantle and Crustal Magmas as Revealed by Single Crystal Analysis. Reviews in Mineralogy and Geochemistry 69, 1, 445–478 (2008). 9. Bindeman, I. N. & Valley, J. W. Oxygen isotope study of the long Valley-Glass Mountain magmatic system, California: Isotope thermometry, and convection in large silicic magma bodies. Contrib. Minera.l Petrol. 144, 185–205 (2002). 10. Feeley, T. C., Clynne, M. A., Winer, G. S. & Grice, W. C. Oxygen Isotope Geochemistry of the Lassen Volcanic Center, California: Resolving Crustal and Mantle Contributions to Continental Arc Magmatism. J. Petrol. 49(5), 971–997 (2008). 11. Dallai, L., Freda, C. & Gaeta, M. Oxygene isotope geochemistry of pyroclastic clinopyroxene monitors carbonate contributions to Roman-type ultrapotassic magmas. Contrib Mineral. Petrol. 148, 247–263 (2004). 12. Turi, B. Carbon and oxygen isotopic composition of carbonates in limestone blocks and related geodes from the ‘‘Black Pozzolans’’ formation of the Alban Hills. Chem. Geol. 5, 195–205 (1970). 13. Marziano, G. I., Gaillard, F. & Pichavent, M. Limestone assimilation by basaltic magmas, an experimental re-assessment and application to Italian volcanoes. Contrib. Mineral. Petrol. 155, 719–738 (2008). 14. Jaupart, C. & Tait, S. Dynamics of eruptive phenomena. Reviews in Mineralogy and Geochemistr, 24, 1, 213–238 (1990). 15. Thomas, N., Jaupart, C. & Vergniolle, S. On the vesicularity of pumice. J. Geophys. Res. 99, 15633–15644 (1994). 16. Gardner, J. E., Thomas, R. M. E., Jaupart, C. & Tait, S. Fragmentation of magma during plinian volcanic eruptions. Bull.Volcanol. 58, 144–162 (1996). 17. Mastrolorenzo, G. & Pappalardo, L. Magma degassing and crystallization processes during eruptions of high-risk Neapolitan volcanoes, Evidence of common equilibrium rising processes in alkaline magmas. Earth Plan. Sci. Lett. 250, 164–181 (2006). 18. Mongrain, J., Larsen, J. F. & King, P. L. Rapid water exsolution, degassing, and bubble collapse observed experimentally in K-phonolite melts. J. Volcanol. Geotherm. Res. 173, 178–184 (2008). 19. Di Matteo, V., Carroll, M. R., Beherens, H., Vetere, F. & Brooker, R. A. Water solubility in trachytic melts. Chem. Geol. 213, 187–196 (2004). 20. Randolf, A. D. & Larson, M. A. Theory of Particulate Processes, NewYork, Academic Press. (1971). 21. Marsh, B. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization I. Theory. Contrib. Mineral. Petrol. 99, 277–291 (1988). 22. Couch, S. Experimental investigation of crystallization kinetics in a haplogranite system. Am. Mineral. 88, 1471–1485 (2003). 23. Hammer, J. E., Cashman, K. V. & Voight, B. Magmatic processes revealed by textural and compositional trends in Merapi dome lavas. J. Volcanol. Geotherm. Res. 100, 165–192 (2000). 24. Cashman, K. V. Groundmass crystallization of Mount St. Helens Dacite, 1980– 1986—A tool for interpreting shallow magmatic processes. Contrib. Mineral. Petrol. 109, 431–449 (1992). 25. Cashman, K. V. Relationship between plagioclase crystallization and cooling rate in basaltic melts. Contrib. Mineral. Petrol. 113, 126–142 (1993). 26. Morgan, D. J., Blake, S. & Rogers, N. W. Crystallization rate and residence times of sanidine phenocrysts in the AD 472 , Pollena eruption of Vesuvius. Geophysical Research Abstracts, Vol. 5, 09352, European Geophysical Society (2003). 27. Higgins, M. D. Magma dynamics beneath Kameni volcano, Greece, as revealed by crystal size and shape measurements. J. Volcanol. Geotherm. Res. 70, 37–48 (1996). 28. Jerram, D. A., Cheadle, M. J. & Philpotts, A. R. Quantifying the building blocks of igneous rocks, Are clustered crystal frameworks the foundation? J. Petrol. 44, 11, 2033–2051 (2003). 29. Higgins, M. D. & Roberge, J. Three magmatic components in the 1973 eruption of Eldfell volcano, Iceland, evidence from plagioclase crystal size distribution (CSD) and geochemistry. J Volcanol Geotherm Res 161, 247–260 (2007). 30. Cigolini, C., Laiolo, M. &Bertolino, S. Probing Stromboli volcano from the mantle to paroxysmal eruptions. In, Annen C, Zellmer GF, editors. Dynamics of Crustal Magma Transfer, Storage and Differentiation: Geological Society, London, Special Publications 304, 33–70 (2008). 31. Salisbury, M. J., Bohrson, W. A., Clynne, M., Ramos, F. C. & Hoskin, P. Multiple Plagioclase Crystal Populations Identified by Crystal Size Distribution and in situ Chemical Data: Implications for Timescales of Magma Chamber Processes Associated with the 1915 Eruption of Lassen Peak, CA. J. Petrol. 49, 1755–1780 (2008). 32. Brugger, C. R. & Hammer, J. E. Crystal size distribution analysis of plagioclase in experimentally decompressed hydrous rhyodacite magma. Earth Planet. Sci. Lett. 300, 246–254 (2010). 33. Calzolaio, M., Arzilli, F. & Carroll, M. R. Growth rate of alkali feldspars in decompression-induced crystallization experiments in a trachytic melt of the Phlegraean Fields (Napoli, Italy). Eur. J. Mineral. 22(4), 485–493 (2010). 34. Arienzo, I., Moretti, R., Civetta, L., Orsi, G. & Papale P. The feeding system of Agnano–Monte Spina eruption (Campi Flegrei, Italy): Dragging the past into present activity and future scenarios. Chem. Geol. 270(1–4), 135–147 (2010).35. Cannatelli, C. et al. Geochemistry of melt inclusions from the Fondo Riccio and Minopoli 1 eruptions at CampiFlegrei (Italy). Chem. Geol. 237(3–4), 418–432 (2007). 36. Fourmentraux, C, Metrich, N., Bertagnini, A. & Rosi, M. Crystal fractionation, magma step ascent, and syn-eruptive mingling: the Averno 2 eruption (Phlegraean Fields, Italy). Contrib. Mineral. Petrol. 163, 1121–1137 (2012). 37. Marianelli, P., Sbrana, A. & Proto, M. Magma chamber of the Campi Flegrei supervolcano at the time of eruption of the Campanian Ignimbrite. Geology 34, 11, 937–940 (2006). 38. Carroll, M. R. Chlorine solubility in evolved alkaline magmas. Ann. Geophys. 48, 619–631 (2005). 39. Della Vedova, B., Bellani, S., Pellis, G.&Squarci, P. Deep temperatures and surface heat-flow distribution. In, Anatomy of an Orogen, the Apennines and Adjacent Mediterranean Basins, G.BVai and L.P.Martini, eds. Kluwer Academic Publishers, Dordrecht, 4 656 pp. (2001). 40. Wholetz, K., Civetta, L. & Orsi, G. Thermal evolution of the Phlegraean magmatic system. J. Volcanol. Geotherm. Res. 91, 381–414 (1999). 41. Blake, S. Volatile oversaturation during the evolution of silicic magma chambers as an eruption trigger. J. Geophys. Res. 89, 8237–8244 (1984). 42. Chiodini, G., Caliro, S., De Martino, P., Avino, R. & Gherardi, F. Early signals of new volcanic unrest at Campi Flegrei caldera? Insights from geochemical data and physical simulations. Geology, first published on July 23, 2012, doi:10.1130/ G33251.1. 43. Higgins, M. D. Measurement of Crystal Size Distributions. Am. Mineral. 85, 1105–1116 (2000). 44. Higgins, M. D. Closure in crystal size distributions (CSD), verification of CSD calculations and the significance of CSD fans. Am. Mineral. 87, 171–175 (2002). 45. Higgins, M. D. Quantitative textural measurements in igneous and metamorphic petrology. Book. Cambridge University Press, 270 pages, (2006). 46. Jerram, D. A. & Higgins, M. D. 3D analysis of rock textures: quantifying igneous microstructures. Elements 3(4), 239–245 (2007). 47. Gualda, G. A. R. Crystal size distributions derived from 3D datasets: sample size versus uncertainties. J. Petrol. 47, 1245–1254 (2006). 48. Mock, A. & Jerram, D. A. Crystal size distributions (CSD) in three dimensions: insights from the 3D reconstruction of a highly porphyritic rhyolite. J. Petrol. 46, 1525–1541 (2005). 49. Houghton, B. F. & Wilson, C. J. N. A vesicularity index for pyroclastic deposits. Bull. Volcanol. 51, 451–462 (1989).en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.obiettivoSpecifico3.5. Geologia e storia dei vulcani ed evoluzione dei magmien
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.obiettivoSpecifico4.3. TTC - Scenari di pericolosità vulcanicaen
dc.description.journalTypeN/A or not JCRen
dc.description.fulltextopenen
dc.relation.eissnISSN (online): 2045-2322en
dc.contributor.authorPappalardo, L.en
dc.contributor.authorMastrolorenzo, G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-9187-252X-
crisitem.author.orcid0000-0002-2578-541X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
pappalardo (2012).pdf8.42 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

30
checked on Feb 10, 2021

Page view(s) 50

427
checked on Mar 27, 2024

Download(s) 20

422
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric