Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8311
DC FieldValueLanguage
dc.contributor.authorallEsposti Ongaro, T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallClarke, A. B.; School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USAen
dc.contributor.authorallVoight, B.; Department of Geosciences, Penn State University, University Park, Pennsylvania, USAen
dc.contributor.authorallNeri, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.authorallWidiwijayanti, C.; Earth Observatory of Singapore, Nanyang Technological University, Singaporeen
dc.date.accessioned2012-10-19T13:43:19Zen
dc.date.available2012-10-19T13:43:19Zen
dc.date.issued2012-06-26en
dc.identifier.urihttp://hdl.handle.net/2122/8311en
dc.description.abstractThe dynamics of the May 18, 1980 lateral blast at Mount St. Helens, Washington (USA), were studied by means of a three-dimensional multiphase flow model. Numerical simulations describe the blast flow as a high-velocity pyroclastic density current generated by a rapid expansion (burst phase, lasting less than 20 s) of a pressurized polydisperse mixture of gas and particles and its subsequent gravitational collapse and propagation over a rugged topography. Model results show good agreement with the observed large-scale behavior of the blast and, in particular, reproduce reasonably well the front advancement velocity and the extent of the inundated area. Detailed analysis of modeled transient and local flow properties supports the view of a blast flow led by a high-speed front (with velocities between 100 and 170 m/s), with a turbulent head relatively depleted in fine particles, and a trailing, sedimenting body. In valleys and topographic lows, pyroclasts accumulate progressively at the base of the current body after the passage of the head, forming a dense basal flow depleted in fines (less than 5 wt.%) with total particle volume fraction exceeding 10−1 in most of the sampled locations. Blocking and diversion of this basal flow by topographic ridges provides the mechanism for progressive current unloading. On ridges, sedimentation occurs in the flow body just behind the current head, but the sedimenting, basal flow is progressively more dilute and enriched in fine particles (up to 40 wt.% in most of the sampled locations). In the regions of intense sedimentation, topographic blocking triggers the elutriation of fine particles through the rise of convective instabilities. Although the model formulation and the numerical vertical accuracy do not allow the direct simulation of the actual deposit compaction, present results provide a consistent, quantitative model able to interpret the observed stratigraphic sequence.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of geophysical research - solid earthen
dc.relation.ispartofseries/117(2012)en
dc.subjectMount St. Helensen
dc.subjectblast, multiphase flowen
dc.subjectnumerical simulationsen
dc.subjectpyroclastic density currentsen
dc.titleMultiphase flow dynamics of pyroclastic density currents during the May 18, 1980 lateral blast of Mount St. Helensen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB06208en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneousen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.99. General or miscellaneousen
dc.identifier.doi10.1029/2011JB009081en
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0148-0227en
dc.contributor.authorEsposti Ongaro, T.en
dc.contributor.authorClarke, A. B.en
dc.contributor.authorVoight, B.en
dc.contributor.authorNeri, A.en
dc.contributor.authorWidiwijayanti, C.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentDepartment of Geosciences, Penn State University, University Park, Pennsylvania, USAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italiaen
dc.contributor.departmentEarth Observatory of Singapore, Nanyang Technological University, Singaporeen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptArizona State University, USA-
crisitem.author.deptDepartment of Geosciences, Penn State University, University Park, Pennsylvania, USA-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.deptDepartment of Geosciences, Pennsylvania State University, University Park, Pennsylvania, USA-
crisitem.author.orcid0000-0002-6663-5311-
crisitem.author.orcid0000-0002-3536-3624-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
JGR_EspostiO_etal_2012.pdf7.79 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

41
checked on Feb 10, 2021

Page view(s) 50

199
checked on Apr 13, 2024

Download(s)

32
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric