Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8210
DC FieldValueLanguage
dc.contributor.authorallElter, F. M.; Dipteris, Università degli Studi di Genovaen
dc.contributor.authorallElter, P.; Località Val di Vico, Pisaen
dc.contributor.authorallEva, C.; Dipteris, Università degli Studi di Genovaen
dc.contributor.authorallEva, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallKraus, R. K.; Dipteris, Università degli Studi di Genovaen
dc.contributor.authorallPadovano, M.; Dipteris, Università degli Studi di Genovaen
dc.contributor.authorallSolarino, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.date.accessioned2012-10-16T06:49:13Zen
dc.date.available2012-10-16T06:49:13Zen
dc.date.issued2012en
dc.identifier.urihttp://hdl.handle.net/2122/8210en
dc.description.abstractThe aim of this paper is to propose an alternative model for the Pliocene-Quaternary to present evolution of the Northern–Central Apennines by combining geometrical requirements (Riedel shear system) with existing structural and geological geometries (fault systems and their tectonic associations). We define three sectors characterized by different geological, seismological, geodetic and geothermal signatures: the North-Western Sector (NWS), the Western Central Sector (WCS) and the Eastern Central Sector (ECS). According to GPS data derived from literature the three blocks move independently. In particular, the NWS is bound between the ECS/WCS and the Alps; this constraint leads to a stress accumulation responsible for a fragmentation into further several blocks, which move either to the NE or SW. The WCS is relatively stable; the ECS moves towards NE and is characterized by the presence of numerous releasing and restraining bends, which can be related to the action of a main NNW–SSE left-lateral shear zone. Accordingly, the recent and active tectonic setting of the Northern–Central Apennines is rather related to the dynamics of the introduced blocks, caused by the push of the African plate against Europe, than to subduction processes.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofJournal of geodynamicsen
dc.relation.ispartofseries/54 (2012)en
dc.subjectNorthern-Central Apenninesen
dc.subjectRiedel shear systemen
dc.subjectStrike slipen
dc.subjectRestraining and releasing bendsen
dc.titleAn alternative model for the recent evolution of the Northern–Central Apennines (Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber55-63en
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamicsen
dc.identifier.doi10.1016/j.jog.2011.11.001en
dc.relation.referencesAcocella, V., Funiciello, R., 2006. Transverse systems along the extensional Tyrrhenian margin of central Italy and their influence on volcanism. Tectonics 25, TC2003, doi:10.1029/2005TC001845. Anderson, H., Jackson, J., 1987. Active Tectonics of the Adriatic region. Geophys. J. R. Astr. Soc. 91, 937–983. Argnani, A., 1998. Structural elements of the Adriatic foreland and their relationships with the front of the Apennine fold-and-thrust belt. Mem. Soc. Geol. Ital. 52, 647–654.Ascione, A., Cinque, A., Miccadei, E., Villani, F., 2008. The Plio-Quaternary uplift of the Apennines Chain: new data from the analysis of topography and river valleys in Central Italy. Geomorphology 102, 105–118. Bigi, S., Doglioni, C., Mariotti, G., 2002. Thrust vs normal fault decollements in the Central Apennines. Boll. Soc. Geol. Ital. 1, 161–166. Boccaletti, M., Corti, G., Martelli, L., 2010. Recent and active tectonics of the external zone of the Northern Apennines (Italy). Int. J. Earth Sci. (Geol. Rundsch.), doi:10.1007/s00531-010-0545-y. Boncio, P., Lavecchia, G., 2000. A structural model for active extension in Central Italy. J. Geodyn. 29, 233–244. Bonini, M., 1998. Chronology of deformation and analogue modelling of the Plio-Pleistocene ‘Tiber Basin’: implications for the evolution of the Northern Apennines (Italy). Tectonophysics 285, 147–165. Bortolotti, V., 1966. La tettonica trasversale dell’Appennino. I- La linea Livorno- Sillaro. Boll. Soc. Geol. Ital. 85, 529–540. Calamita, F., Esestime, P., Viandante, M.G., 2005. Tectonic setting of the Central–Southern Apennines. Rend. Soc. Geol. Ital. (Nuova Serie) 1, 66–68. Calamita, F., Esestime, P., Paltrinieri, W., Scisciani, V., Tavarnelli, E., 2009. Structural inheritance of pre-and syn-orogenic normal faults on the arcuate geometry of Pliocene-Quaternary thrust: examples from Central and Southern Apennine chain. Ital. J. Geosci. 128, 381–394. Cantini, P., Testa, G., Zanchetta, G., Cavallini, R., 2001. The Plio-Pleistocene evolution of extensional tectonics in northern Tuscany, as constrained by new gravimetric data from the Montecarlo Basin (lower Arno Valley, Italy). Tectonophysics 330, 25–43. Carmignani, L., Decandia, F.A., Disperati, L., Fantozzi, P.L., Lazzarotto, A., Liotta, D., Oggiano, G., 1995. Relationships between the tertiary structural evolution of the Sardinia-Corsica-Provenc¸ al Domain and the northern Apennines. Terra Nova 7, 128–137. Carmignani, L., Decandia, F.A., Disperati, L., Fantozzi, P.L., Kligfield, R., Lazzarotto, A., Liotta, D., Meccheri, M., 2001. Inner Northern Apennines. In: Vai, G.B., Martini, P.I. (Eds.), Anatomy of an Orogen: the Apennines and Adjacent Mediterranean Basins. Kluwer Academic Publisher, pp. 197–214. Carminati, E., Wortel, M.J.R., Spakman, W., Sabadini, R., 1998. The role of slab detachment processes in the opening of the western-central Mediterranean basins: some geological and geophysical evidence. Earth Planet. Sci. Lett. 160, 655–659. Carminati, E., Doglioni, C., Scrocca, D., 2004. Alps vs. Apennines. In: Crescenti, V., D’Offizi, S., Merlino, S., Sacchi, L. (Eds.), Special Volume of the Ital. Geol. Soc., IGC32. Florence, pp. 141–151. Catalano, S., Monaco, C., Tortorici, L., 2004. Neogene-Quaternary tectonic evolution of the Southern Apennines. Tectonics 23, TC2003, doi:10.102972003TC00. Cataldi, R., Mongelli, F., Squarci, P., Taffi, L., Zito, G., Calore, C., 1995. Geothermal ranking of Italian territory. Geothermics 24, 115–129. Cattaneo, M., Augliera, P., De Luca, G., Gorini, A., Govoni, A., Marcucci, S., Michelini, A., Monachesi, G., Spallarossa, D., Troiani, L., Xgums, 2000. The 1997 Umbria- Marche (Italy) earthquake sequence: analysis of the data recorded by the local and temporary networks. J. Seismol. 4, 401–414. Cavinato, G.P., Carusi, C., Dall’Asta, M., Miccadei, E., Piacentini, T., 2002. Sedimentary and tectonic evolution of Plio-Pleistocene alluvial and lacustrine deposits of Fucino Basin (central Italy). Sediment. Geol. 148, 29–59. Cello, G., Mazzoli, S., 1999. Apennine tectonics in southern Italy: a review. Geodynamics 27, 191–211. Cello, G., Mazzoli, S., Tondi, E., Turco, E., 1997. Active tectonics in the central Apennines and possible implications for seismic hazard analysis in peninsular Italy. Tectonophysics 272, 43–68. Cenni, N., Viti, M., Baldi, P., Mantovani, E., Ferrini, M., D’intinosante, V., Babbucci, D., Albarello, D., 2008. Short-term (geodetic) and long-term (geological) velocity fields in the Northern Apennines. Boll. Soc. Geol. Ital. 127, 93– 104. Cerrina Feroni, A., Leoni, L., Martelli, L., Martinelli, P., Ottria, G., Sarti, G., 2001. The Romagna Apennines, Italy: an eroded duplex. Geol. J. 36, 39–54. Cerrina Feroni, A., Otaria, G., Martinelli, P., Martelli, L., Catanzariti, R., 2002. Carta Geologico-Strutturale dell’Appennino Emiliano-Romagnolo. Sheet 1 S. E.L.CA. Firenze, Scale 1:250.000. Cerrina Feroni, A., Otaria, G., Ellero, A., 2004. The northern Apennine Italy: geological structure and traspressive evolution. In: Crescenti, V., D’Offizi, S., Merlino, S., Sacchi, L. (Eds.), Special Volume of the Ital. Geol. Soc., IGC32. Florence, pp. 15–32. Chiarabba, C., Jovane, L., Di Stefano, R., 2005. A new view of Italian seismicity using 20 years of instrumental recordings. Tectonophysics 395, 251–268. Chiaraluce, L., Chiarabba, C., Collettini, C., Piccinini, D., Cocco, M., 2007. Architecture and mechanics of an active low-angle normal fault: Alto Tiberina fault, northern Apennines, Italy. J. Geophys. Res. 112, 1–9. Ciaccio, M.G., Chiarabba, C., 2002. Tomographic models and seismotectonics of the Reggio Emilia region, Italy. Tectonophysics 344, 261–276. Collettini, C., Barchi, M., Pauselli, C., Federico, C., Pialli, G., 2000. Seismic expression of active extensional faults in northern Umbria (Central Italy). J. Geodyn. 29, 309–319. Coltorti, M., Farabolini, P., Gentili, B., Pambianchi, G., 1996. Geomorphological evidence for anti-Apennine faults in the Umbro-Marchean Apennines and in the peri-Adriatic basin, Italy. Geomorphology 15, 33–45. Costa, M., 2003. The buried Apenninic arcs of the Po Plain and northern Adriatic Sea (Italy): a new model. Boll. Soc. Geol. Ital. 122, 3–9. Cunningham, W.D., Mann, P., 2007. Tectonics of strike–slip restraining and releasing bends. In: Cunningham, W.D., Mann, P. (Eds.), Tectonics of Strike–Slip Restraining and Releasing Bends, 290. Geological Society of London, pp. 1–12, Special Publication. D’Agostino, N., Jackson, J.A., Dramis, F., Funiciello, R., 2001. Interactions between mantle upwelling, drainage evolution and active normal faulting: an example from the central Apennines (Italy). Geophys. J. Int. 147, 475–479. D’Agostino, N.D., Avallone, A., Cheloni, D., D’Anastasio, E., Mantenuto, S., Selvaggi, G., 2008. Active tectonics of the Adriatic region from GPS and earthquake slip vectors. J. Geophys. Res., doi:10.1029/2008jb005860. Dallmeyer, R.D., Decandia, F.A., Elter, F.M., Lazzarotto, A., Liotta, D., 1995. Il sollevamento della crosta nel quadro della tettonica distensiva post-collisionale dell’ Appennino settentrionale: nuovi dati dall’area geotermica di Larderello (Toscana meridionale). Stud. Geol. Camerti 1, 337–347. Davis, G.H., Reynolds, S.J., 1996. Structural Geology of Rocks and Regions, 2nd edition. John Wiley & Sons, Inc., New York, p. 776, ISBN 0-471r-r52621-5. De Alteriis, G., 1995. Different foreland basins in Italy: examples from the central and southern Adriatic Sea. Tectonophysics 252, 349–373. Decandia, F.A., 1982. Geologia dei Monti di Spoleto (Prov. Perugia). Boll. Soc. Geol. Ital. 101, 291–315. Della Vedova, B., Bellini, S., Pellis, G., Squarci, P., 2001. Deep temperatures and surface heat flow distribution. In: Vai G.B., Martini I.P. (Eds.), Anatomy of an orogen, The Apennines and adjacent Mediterranean basins, Kluwer Academic Publisher, pp. 65–76. Dellisanti, F., Pini, G.A., Tateo, F., Baudin, F., 2008. The role of tectonic shear strain on the il-litization mechanism of mixed-layers illite-smectite. A case study from a fault zone in the Northern Apennines, Italy. Int. J. Earth Sci. 97, 601–616. De Luca, G., Cattaneo, M., Monachesi, G., Amato, A., 2009. Seismicity in Central and Northern Apennines integrating the Italian national and regional networks. Tectonophysics 476, 121–135. Devoti, R., Riguzzi, F., Cuffaro, M., Doglioni, C., 2008. New GPS constraints on the kinematics of the Apennines subduction. Earth Planet. Sci. Lett. 273, 163–174. Di Luzio, E., Saroli, M., Esposito, C., Bianchi-Fasani, G., Cabinato, G.P., Scarascia- Mugnozza, G., 2004. Influence of structural framework on mountain slope deformation in the Maiella anticline (Central Apennines, Italy). Geomorphology 60, 417–432. Doglioni, C., Moretti, I., Roure, F., 1991. Basal lithospheric detachment, eastward mantle flow and Mediterranean geodynamics: a discussion. J. Geodyn. 13, 47–49. Doglioni, C., Harabaglia, P., Merlini, S., Monelli, F., Peccerillo, A., Piromallo, C., 1999. Orogens and slabs vs. their direction of subduction. Earth Sci. Rev. 45, 167–208. Ekström, G., Morelli, A., Boschi, E., Dziewonski, A.M., 1998. Moment tensor analysis of the Central Italy earthquake sequence of September–October 1997. Geophys. Res. Lett. 25, 1971–1974. Elter, F.M., Sandrelli, F., 1995. La fase post-nappe nella Toscana meridionale: nuova interpretazione sull’evoluzione dell’Appennino settentrionale. Atti Tic. Sci. Terra 37, 173–193. Elter, F.M., Pandeli, E., 1996. Structural setting of the Paleozoic crystalline basement of the Northern Apennines (Italy). In: Oncken, O., Janssen, C. (Eds.), Basement Tectonics. Kluwer Academic Publisher, pp. 79–90. Elter, F.M., Elter, P., Eva, C., Eva, E., Kraus, R.K., Padovano, M., Solarino, S., 2011. Strike–slip geometry inferred from the seismicity of the Northern–Central Apennines (Italy). J. Geodyn., doi:10.1016/j.jog.2011.03.003. Esestime, P., D’Arcangelo, S., Paltrinieri, W., Calamita, F., 2006. Strutture traspressive della catena Apula sepolta (Appennino meridionale, settore campanomolisano). Rend. Soc. Geol. Ital. 2, 135–137, Nuova Serie. Eva, E., Ferretti, G., Solarino, S., 2005. Superposition of different stress orientations in the western sector of the northern Apennines (Italy). J. Seismol. 9, 413–430. Faccenna, C., Funiciello, F., Giardini, D., Lucente, P., 2001. Episodic back-arc extension during restricted mantle convention in the Central Mediterranean. Earth Planet. Sci. Lett. 187, 105–109. Favali, P., Funiciello, R., Mattietti, G., Mele, G., Salvini, F., 1993. An active margin across the Adriatic Sea (central Mediterranean Sea). Tectonophysics 219, 109–117. Fazzini, P., Gelmini, R., 1982. Tettonica trasversale nell’Appennino Settentrionale. Mem. Soc. Geol. Ital. 24, 299–309. Ferranti, L., Oldow, J.S., Sacchi, M., 1996. Pre-Quaternary orogen-parallel extension in the Southern Apennine belt, Italy. Tectonophysics 260, 325–347. Ferranti, L., Santoro, E., Mazzella, M.E., Monaco, C., Morelli, D., 2009. Active transpression in the northern Calabria Apennines, southern Italy. Tectonophysics 476, 226–251. Finetti, I.R., Boccaletti, M., Bonini, M., Del Ben, A., Pipan, M., Prizzon, A., Sani, F., 2005. Lithospheric tectono-stratigraphic setting of the Ligurian Sea-Northern Apennines-Adriatic Foreland from integrated CROP seismic data. In: Finetti, I.R. (Ed.), Deep Seismic Exploration of the Central Mediterranean and Italy, CROP PROJECT, 8. Elsevier, pp. 119–158. Frepoli, A., Amato, A., 1997. Contemporaneous extension and compression in the Northern Apennines from earthquake fault-plane solutions. Geophys. J. Int. 129, 368–388. Frepoli, A., Amato, A., 2000. Fault plane solutions of crustal earthquakes in Southern Italy (1988–1995): seismotectonic implications. Anal. Geofis. 43, 437–467. Galadini, F., 1999. Pleistocene change in the central Apennine fault kinematics, a key to decipher active tectonics in central Italy. Tectonics 18, 877–894. Galadini, F., Messina, P., 2001. Plio-Quaternary changes of normal fault architecture in the Central Apennines (Italy). Geodin. Acta 14, 321–344. Galadini, F., Messina, P., 2004. Early-middle Pleistocene eastward migration of the Abruzzi Apennine (central Italy) extensional domain. J. Geodyn. 37, 57–81. Gasparini, C., Iannaccone, G., Scarpa, R., 1985. Fault-plane solutions and seismicity of the Italian Peninsula. Tectonophysics 117, 59–78. Gueguen, E., Doglioni, C., Fernandez, M., 1998. On the post-25 Ma geodynamic evolution of the Western Mediterranean. Tectonophysics 298, 259–269.Hatcher, R.D., 1995. Structural Geology, Principles, Concepts and Problems. Merill Publishing Company, Columbus, p. 525. Horsfield, W.T., 1977. An experimental approach to basement-controlled faulting. Geol. Mijnbouw 56, 363–370. Legg, M.R., Goldfinger, C., Kamerling, M.J., Chaytor, J.D., Einstein, D.E., 2007. Morphology structure and evolution of California Continental Borderland restraining bends. In: Cunningham, W.D., Mann, P. (Eds.), Tectonics of Strike–Slip Restraining and Releasing Bends, 290. Geological Society of London, pp. 143–168, Special Publication. Mantovani, E., Babbucci, D., Tamburelli, C., Viti, M., 2009. A review on the driving mechanism of the Tyrrhenian–Apennines system: implications for the present seismotectonic setting in the Central–Northern Apennines. Tectonophysics 476, 22–29. Martini, P.I., Sagri, M., Colella, A., 2001. Plio-Quaternary-Quaternary basins of the inner Apennines and Calabrian arc. In: Vai, G.B., Martini, P.I. (Eds.), Anatomy of an Orogen: the Apennines and Adjacent Mediterranean Basins. Kluwer Academic Publisher, pp. 375–400. McClay, K., Bonora, M., 2001. Analog models of restraining stepovers in strike–slip fault systems. AAPG, 233–260. Naylor, M.A., Mandl, G., Sijpesteijn, C.H.K., 1986. Fault geometries in basementinduced wrench faulting under different initial stress states. J. Struct. Geol. 8, 737–752. Nirta, G., Principi, G., Vannucchi, P., 2007. The Ligurian Units of Western Tuscany (Northern Apennines): insight on the influence of pre-existing weakness zones during ocean closure. Geodin. Acta 20 (1–2), 71–97. Pasquale, V., Chiozzi, P., Verdoya, M., 2010. Tectonothermal processes and mechanical strength in a recent orogenic belt: Northern Apennines. J. Geophys. Res., 115, doi:10.1029/2009JB006631. Patacca, E., Sartori, R., Scandone, P., 1990. Tyrrhenian basin and Apenninic arc: kinematic relations since late Tortonian times. Mem. Soc. Geol. Ital. 45, 425–451. Pauselli, C., Federico, C., 2003. Elastic modeling of the Alto Tiberina normal fault (central Italy): geometry and lithological stratification influences on the local stress field. Tectonophysics 374, 99–109. Piccardi, L., Gaudemer, Y., Tapponnier, P., Boccaletti, M., 1999. Active oblique extension in the central Apennines (Italy): evidence from the Fucino region. Geophys. J. Int. 139, 499–530. Piccardi, L., Tondi, G., Cello, G., 2006. Geo-structural evidence for active oblique extension in South-Central Italy. In: Pinter, N., Grenerczy, G., Weber, J., Stein, S., Medak, D. (Eds.), The Adria microplate: GPS geodesy, tectonics and Hazard. NATO Science Series IV-Earth and Environmental Sciences, 61. Springer, pp. 95–108. Pino, N.A., Mazza, S., 2000. The Umbria-Marche (Central Italy) earthquakes: relation between rupture directivity and sequence evolution for the Mw > 5 Shocks. J. Seismol. 4, 451–461. Pizzi, A., Galadini, F., 2009. Pre-existing cross-structures and active fault segmentation in the Northern–Central Apennines (Italy). Tectonophysics, doi:10.1016/j.tecto.2009.03.018. Pondrelli, S., Morelli, A., Ekström, G., Mazza, S., Boschi, E., Dziewonski, A.M., 2002. European-Mediterranean regional centroid-moment tensors: 1997–2000. Phys. Earth Planet. Int. 130, 71–101. Pondrelli, S., Morelli, A., Ekström, G., 2004. European-Mediterranean regional centroid moment tensor catalog: solutions for years 2001 and 2002. Phys. Earth Planet. Int. 145, 127–147. Pondrelli, S., Salimbeni, S., Ekström, G., Morelli, A., Gasperini, P., Vannucci, G., 2006. The Italian CMT dataset from 1977 to the present. Phys. Earth Planet. Int. 159 (3–4), 286–303. Pondrelli, S., Salimbeni, S., Morelli, A., Ekström, G., Boschi, E., 2007. European- Mediterranean regional centroid moment tensor catalog: solutions for years 2003 and 2004. Phys. Earth Planet. Int. 164, 90–112. Ramsay, J.G., Huber, M.I., 1987. The techniques of modern structural geology. Folds and Fractures, Vol. 2. Academic Press, London. Sani, F., Bonini, M., Piccardi, L., Vannucci, G., Delle Donne, D., Benvenuti, M., Moratti, G., Corti, G., Montanari, D., Sedda, L., Tanini, C., 2009. Late Pliocene-Quaternary evolution of outermost hinterland basins of the Northern Apennines (Italy), and their relevance to active tectonics. Tectonophysics 476, 336–356. Sartori, R., 2001. Corsica-Sardinia block and the Tyrrhenian Sea. In: Vai, G.B., Martini, P.I. (Eds.), Anatomy of an Orogen: the Apennines and Adjacent Mediterranean Basins. Kluwer Academic Publisher, pp. 366–374. Satolli, S., Calamita, F., 2008. Differences and similarities between the central and the southern Apennines (Italy): examining the Gran Sasso versus the Matese-Frosolone salients using paleomagnetic, geological, and structural data. J. Geophys. Res. 113, B10101, doi:10.1029/2008 JB005699. Scalera, G., 2008. Is large scale subduction made unlikely by the Mediterranean deep seismicity? New concepts in global tectonics. Newsletter 47, 24–30. Sibson, R.H., Rupture interaction with fault jogs. In: Das, S., Boatwright, J., Sholz, C.H. (Eds.), Earthquake Source Mechanics. Geophys. Monograph, American Geophysical Union, 1986, pp. 157–167. Solarino, S., Cassinis, S., 2007. Seismicity of the upper lithosphere and its relationships with the crust in the Italian region. Boll. Geofis. Teor. Appl. 48, 99–114. Sorgi, C., Deffontaines, B., Hippolyte, J.C., Cadet, J.P., 1998. An integrated analysis of transverse structures in the northern Apennines Italy. Geomorphology 25, 193–206. Speranza, F., Adamoli, L., Maniscalco, R., Florindo, F., 2003. Genesis and evolution of a curved mountain front: paleomagnetic and geological evidence from the Gran Sasso range (central Apennines, Italy). Tectonophysics 362, 183–189. Tavarnelli, E., Decandia, F.A., Renda, P., Tramutoli, M., Gueguen, E., Alberti, M., 2001. Repeated reactivation in the Apennine Maghrebide system: an example of fault zone. In: Holdsworth, R.E., Strachan, R.A., Magloughlin, J., Knipe, R.J. (Eds.), The Nature and Tectonic Significance of Fault Zone Weakening, 186. Geological Society, pp. 1–9, Special Publication. Vezzani, L., Festa, A., Ghisetti, F., 2009. Geological-Structural Map of the Central–Southern Apennines (Italy), Sheets 1 and 2, S.EL.CA. Florence, Scale 1:250.000. ISBN 978-88-902635-9-0. Vignaroli, G., Faccenna, C., Jolivet, L., Piromallo, C., Rossetti, F., 2008. Subduction polarity reversal at the junction between the Western Alps and the Northern Apennines, Italy. Tectonophysics 450, 34–39. Viti, M., Mantovani, E., Babbucci, D., Tamburelli, C., 2011. Plate kinematics and geodynamics in the Central Mediterranean. J. Geodyn. 51, 190–199.en
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0264-3707en
dc.contributor.authorElter, F. M.en
dc.contributor.authorElter, P.en
dc.contributor.authorEva, C.en
dc.contributor.authorEva, E.en
dc.contributor.authorKraus, R. K.en
dc.contributor.authorPadovano, M.en
dc.contributor.authorSolarino, S.en
dc.contributor.departmentDipteris, Università degli Studi di Genovaen
dc.contributor.departmentLocalità Val di Vico, Pisaen
dc.contributor.departmentDipteris, Università degli Studi di Genovaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentDipteris, Università degli Studi di Genovaen
dc.contributor.departmentDipteris, Università degli Studi di Genovaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDipteris, Università degli Studi di Genova-
crisitem.author.deptLocalità Val di Vico, Pisa-
crisitem.author.deptDipTeRis Dipartimento per lo studio del territorio e delle sue risorse, Università di Genova-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptDipteris, Università degli Studi di Genova-
crisitem.author.deptDipteris, Università degli Studi di Genova-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0001-6054-1325-
crisitem.author.orcid0000-0002-9577-1347-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
elter2012.pdfMain article1.94 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

18
checked on Feb 7, 2021

Page view(s) 50

331
checked on Mar 27, 2024

Download(s)

29
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric