Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8198
DC FieldValueLanguage
dc.contributor.authorallMalagnini, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallLucente, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallDe Gori, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallAkinci, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallMunafò, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2012-10-15T08:31:42Zen
dc.date.available2012-10-15T08:31:42Zen
dc.date.issued2012en
dc.identifier.urihttp://hdl.handle.net/2122/8198en
dc.description.abstractThe MW 6.13 L’Aquila earthquake ruptured the Paganica fault on 2009/04/06 at 01:32 UTC, and started a strong sequence of aftershocks. For the first four days, the region north of the hypocenter of the main quake was shaken by three large events (MW 5.0) that ruptured different patches of the Monti della Laga fault (hereafter “Campotosto”). In our hypothesis, these aftershocks were induced by a dramatic reduction in the fault’s shear strength due to a pulse of pore fluid pressure released after the L’Aquila main earthquake. Here we model the time evolution of the pore fluid pressure northward from the main hypocenter. We show that, during the sequence, the Campotosto fault failed in multiple episodes, when the specific patches/asperities underwent fluid pressure-related strength reductions of 7–10 MPa. Although such drops in strength are very large in amplitude, the contribution of other weakening mechanisms (perturbations of the Coulomb shear stress, and/or dynamic stresses induced by passing seismic waves) cannot be ruled out by our observations. However, the Coulomb shear stress variations either had negative amplitudes down to 0.2 MPa (i.e., tended to inhibit further seismic activity), or had very small positive amplitudes (<0.05 MPa). Paleoseismological evidence supports the hypothesis that larger events (MW 6.5–7) have occurred on the Paganica fault [EMERGEO Working Group, 2009], whereas Lucente et al. [2010] concluded that an important migration of pore fluids characterized the preparatory phase of the L’Aquila main shock. Consequently, the MW 6.13 L’Aquila earthquake may be analogous, at a larger scale, to one of the three Campotosto largest aftershocks. The complex behavior observed for the L’Aquila-Campotosto fault system seems to be common to other seismogenic structures in the Central Apennines (e.g., the Umbria-Marche fault system), and need to be taken into consideration for the assessment of seismic hazard.en
dc.language.isoEnglishen
dc.relation.ispartofJournal of geophysical researchen
dc.relation.ispartofseries/117(2012)en
dc.subject2009 La'Aquila sequenceen
dc.subjectpore fluid pressure diffusionen
dc.subjectseismic hazarden
dc.titleControl of pore fluid pressure diffusion on fault failure mode:Insights from the 2009 L’Aquila seismic sequenceen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB05302en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneousen
dc.identifier.doi10.1029/2011JB008911en
dc.relation.referencesAki, K. (1965), Maximum likelihood estimate of b in the formula log N = a - bM and its confidence limits, Bull. Earthquake Res. Inst. Univ. Tokyo, 43, 237–239. Akinci, A., F. Galadini, D. Pantosti, M. Petersen, L. Malagnini, and D. Perkins (2009), Effect of time dependence on probabilistic seismichazard maps and deaggregation for the central Apennines, Italy, Bull. Seismol. Soc. Am., 99, 585–610, doi:10.1785/0120080053. Akinci, A., L. Malagnini, and F. Sabetta (2010). Characteristics of the strong ground motions from the 6 April 2009 L’Aquila earthquake, Italy, Soil Dyn. Earthquake Eng., 30, 320–335, doi:10.1016/j.soildyn. 2009.12.006 Anderson, E. M. (1905), The dynamics of faulting, Trans. Edinburgh Geol. Soc., 8, 387–402. Antonioli, A., D. Piccinini, L. Chiaraluce, and M. Cocco (2005), Fluid flow and seismicity pattern: Evidence from the 1997 Umbria-Marche (central Italy) seismic sequence, Geophys. Res. Lett., 32, L10311, doi:10.1029/ 2004GL022256. Atzori S., I. Hunstad, M. Chini, S. Salvi, C. Tolomei, C. Bignami, S. Stramondo, E. Trasatti, A. Antonioli, and E. Boschi (2009), Finite fault inversion of DInSAR coseismic displacement of the 2009 L’Aquila earthquake (central Italy), Geophys. Res. Lett., 36, L15305, doi:10.1029/ 2009GL039293. Basili, R., G. Valensise, P. Vannoli, P. Burrato, U. Fracassi, S. Mariano, M. M. Tiberti, and E. Boschi (2008), The Database of Individual Seismogenic Sources (DISS), version 3: Summarizing 20 years of research on Italy’s earthquake geology, Tectonophysics, 453, 20–43, doi:10.1016/j.tecto.2007.04.014. Boncio, P., G. Lavecchia, and B. Pace (2004), Defining a model of 3D seismogenic sources for Seismic Hazard Assessment applications: The case of central Apennines (Italy), J. Seismol., 8, 407–425, doi:10.1023/ B:JOSE.0000038449.78801.05. Brodsky, E. E., and S. G. Prejean (2005), New constraints on mechanisms of remotely triggered seismicity at Long Valley Caldera, J. Geophys. Res., 110, B04302, doi:10.1029/2004JB003211. Byerlee, J. (1978), Friction of rocks, Pure Appl. Geophys., 116, 615–626, doi:10.1007/BF00876528. Chiarabba, C., et al. (2009), The 2009 L’Aquila (central Italy) MW6.3 earthquake: Main shock and aftershocks, Geophys. Res. Lett., 36, L18308, doi:10.1029/2009GL039627. Chiaraluce, L., C. Chiarabba, C. Collettini, D. Piccinini, and M. Cocco (2007), Architecture and mechanics of an active low-angle normal fault: Alto Tiberina Fault, northern Apennines, Italy, J. Geophys. Res., 112, B10310, doi:10.1029/2007JB005015. Chiodini, G., F. Frondini, D. M. Kerrick, J. Rogie, F. Parello, L. Peruzzi, and A. R. Zanzari (1999), Quantification of deep CO2 fluxes from Central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing, Chem. Geol., 159, 205–222, doi:10.1016/S0009- 2541(99)00030-3Chiodini, G., F. Frondini, C. Cardellini, F. Parello, and L. Peruzzi (2000), Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance of regional aquifers: The case of central Apennine, Italy, J. Geophys. Res., 105, 8423–8434, doi:10.1029/1999JB900355. Chiodini, G., C. Cardellini, A. Amato, E. Boschi, S. Caliro, F. Frondini, and G. Ventura (2004), Carbon dioxide Earth degassing and seismogenesis in central and southern Italy, Geophys. Res. Lett., 31, L07615, doi:10.1029/ 2004GL019480. Chiodini, G., S. Caliro, C. Cardellini, F. Frondini, S. Inguaggiato, and F. Matteucci (2011), Geochemical evidences for and characterization of CO2 rich gas sources in the epicentral area of the Abruzzo 2009 earthquakes, Earth Planet. Sci. Lett., 304, 389–398, doi:10.1016/j.epsl.2011.02.016. Cinti, F. R., D. Pantosti, P. M. De Martini, S. Pucci, R. Civico, S. Pierdominici, L. Cucci, C. A. Brunori, S. Pinzi, and A. Patera (2011), Evidence for surface faulting events along the Paganica fault prior to the 6 April 2009 L’Aquila earthquake (central Italy), J. Geophys. Res., 116, B07308, doi:10.1029/2010JB007988. Collettini, C., C. Cardellini, G. Chiodini, N. De Parolai, R. E. Holdworth, and S. A. F. Smith (2008), Fault weakening due to CO2 degassing in the Northern Apennines: Short- and long-term processes, Geol. Soc. Lond. Spec. Publ., 299, 175–194, doi:10.1144/SP299.11. D’Agostino, N., S. Mantenuto, E. D’Anastasio, R. Giuliani, M. Mattone, S. Calcaterra, P. Gambino, and L. Bonci (2011), Evidence for localized active extension in the central Apennines (Italy) from global positioning system observations, Geology, 39, 291–294, doi:10.1130/G31796.1. Das, S., and C. H. Scholz (1981), Theory of time-dependent rupture in the Earth, J. Geophys. Res., 86, 6039–6051, doi:10.1029/JB086iB07p06039. De Natale, G., B. Crippa, C. Troise, and F. Pingue (2011), Abruzzo, Italy, earthquakes of April 2009: Heterogeneous fault-slip models and stress transfer from accurate inversion of ENVISAT-InSAR data, Bull. Seismol. Soc. Am., 101, 2340–2354, doi:10.1785/0120100220. Dieterich, J. (1994), A constitutive law for rate of earthquake production and its application to earthquake clustering, J. Geophys. Res., 99, 2601–2618, doi:10.1029/93JB02581. Di Luccio, D., G. Ventura, R. Di Giovambattista, A. Piscini, and F. R. Cinti (2010), Normal faults and thrusts reactivated by deep fluids: The 6 April 2009 Mw 6.3 L’Aquila earthquake, central Italy, J. Geophys. Res., 115, B06315, doi:10.1029/2009JB007190. EMERGEO Working Group (2009). Rilievi geologici di terreno effettuati nell’area epicentrale della sequenza sismica dell’Aquilano del 6 aprile 2009, technical report, Ist. Naz. Geofis. Vulcanologia, Rome. [Available at http://www.earth-prints.org/handle/2122/5036.] Enescu, B., J. Mori, and M. Miyazawa (2007), Quantifying early aftershock activity of the 2004 mid-Niigata Prefecture earthquake (Mw6.6), J. Geophys. Res., 112, B04310, doi:10.1029/2006JB004629. Freund, L. B. (1990), Dynamic Fracture Mechanics, Cambridge Univ. Press, Cambridge, doi:10.1017/CBO9780511546761. Galadini, F., and P. Galli (2003), Paleoseismology of silent faults in the central Apennines (Italy): The Mt. Vettore and Laga Mts. faults, Ann. Geophys., 46, 815–836. Gomberg, J., and K. Felzer (2008), A model of earthquake triggering probabilities and application to dynamic deformations constrained by ground motion observations, J. Geophys. Res., 113, B10317, doi:10.1029/ 2007JB005184. Gutenberg, R., and C. F. Richter (1944), Frequency of earthquakes in California, Bull. Seismol. Soc. Am., 34, 185–188. Harris, R. A. (1998), Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard, J. Geophys. Res., 103(B10), 24,347–24,358, doi:10.1029/98JB01576. Herrmann, R. B., L. Malagnini, and I. Munafo’ (2011), Regional moment tensors of the 2009 L’Aquila earthquake sequence, Bull. Seismol. Soc. Am., 101, 975–993, doi:10.1785/0120100184. Hill, D. P., et al. (1993), Seismicity remotely triggered by the magnitude 7.3 Landers, California, earthquake, Science, 260(5114), 1617–1623, doi:10.1126/science.260.5114.1617. Hunt, J. M. (1990), Generation and migration of petroleum from abnormally pressurized fluid compartments, AAPG Bull., 74, 1–12. Kagan, Y. Y. (1991), Likelihood analysis of earthquake catalogs, Geophys. J. Int., 106, 135–148, doi:10.1111/j.1365-246X.1991.tb04607.x. Kagan, Y. Y., and H. Houston (2005), Relation between main shock rupture process and Omori’s law for aftershock moment release rate, Geophys. J. Int., 163, 1039–1048, doi:10.1111/j.1365-246X.2005.02772.x. Kagan, Y. Y., and L. Knopoff (1981), Stochastic synthesis of earthquake catalogs, J. Geophys. Res., 86, 2853–2862, doi:10.1029/JB086iB04p02853. Lee, H. S., and T. F. Cho (2002), Hydraulic characteristics of rough fractures in linear flow under normal and shear load, Rock Mech. Rock Eng., 35, 299–318, doi:10.1007/s00603-002-0028-y. Lombardi, A. M., M. Cocco, and W. Marzocchi (2010), On the increase of background seismicity rate during the 1997–1998 Umbria-MarcheCentral Italy, sequence: Apparent variation or fluid-driven triggering?, Bull. Seismol. Soc. Am., 100, 1138–1152, doi:10.1785/0120090077. Lucente, F. P., P. De Gori, L. Margheriti, D. Piccinini, M. Di Bona, C. Chiarabba, and N. Piana Agostinetti (2010), Temporal variation of seismic velocity and anisotropy before the 2009 MW 6.3 L’Aquila earthquake, Italy, Geology, 38, 1015–1018, doi:10.1130/G31463.1. Malagnini, L., S. Nielsen, K. Mayeda, and E. Boschi (2010), Energy radiation from intermediate- to large-magnitude earthquakes: Implications for dynamic fault weakening, J. Geophys. Res., 115, B06319, doi:10.1029/ 2009JB006786. Marzocchi, W., and A. M. Lombardi (2009), Real-time forecasting following a damaging earthquake, Geophys. Res. Lett., 36, L21302, doi:10.1029/ 2009GL040233. Miller, S. A., C. Collettini, L. Chiaraluce, M. Cocco, M. Barchi, and B. J. P. Kaus (2004), Aftershocks driven by a high-pressure CO2 source at depth, Nature, 427, 724–727, doi:10.1038/nature02251. Noir, J., E. Jacques, S. Békri, P. M. Adler, P. Tapponnier, and G. C. P. King (1997), Fluid flow triggered migration of events in the 1989 Dobi Earthquake sequence of central Afar, Geophys. Res. Lett., 24, 2335–2338, doi:10.1029/97GL02182. Nur, A., and J. R. Booker (1972), Aftershocks caused by pore fluid flow?, Science, 175, 885–887, doi:10.1126/science.175.4024.885. Ogata, Y. (1988), Statisticals models for earthquake occurrences and residual analysis for point processes, J. Am. Stat. Assoc., 83, 9–27, doi:10.2307/ 2288914. Ogata, Y. (1998), Space-time point-process models for earthquake occurrences, Ann. Inst. Stat. Math., 50(2), 379–402, doi:10.1023/ A:1003403601725. Parotidis, M., and S. A. Shapiro (2004), A statistical model for the seismicity rate of fluid-injection-induced earthquakes, Geophys. Res. Lett., 31, L17609, doi:10.1029/2004GL020421. Parotidis, M., E. Rothert, and S. A. Shapiro (2003), Pore-pressure diffusion: A possible triggering mechanism for the earthquake swarms 2000 in Vogtland/NW-Bohemia, central Europe, Geophys. Res. Lett., 30(20), 2075, doi:10.1029/2003GL018110. Serpelloni, E., L. Anderlini, and M. E. Belardinelli (2012), Fault geometry, coseismic-slip distribution and Coulomb stress change associated with the 2009 April 6, Mw 6.3, L’Aquila earthquake from inversion of GPS displacements, Geophys. J. Int., 188, 473–489, doi:10.1111/j.1365-246X. 2011.05279.x. Sibson, R. H. (2009), Rupturing in overpressured crust during compressional inversion—The case from NE Honshu, Japan, Tectonophysics, 473, 404–416, doi:10.1016/j.tecto.2009.03.016. Stein, R. S. (1999), The role of stress transfer in earthquake occurrence, Nature, 402, 605–609, doi:10.1038/45144. Suppe, J. (2010), Fluid overpressures and crustal strength, paper presented at General Assembly 2010, Eur. Geophys. Union, Vienna. Suppe, J., and L. F. Yue (2008), Pore-fluid pressures and crustal strength, Geophys. Res. Abstr., 10, EGU2008-A-00000. Terakawa, T., A. Zoporowski, B. Galvan, and S. A. Miller (2010), Highpressure fluid at hypocentral depths in the L’Aquila region inferred from earthquake focal mechanisms, Geology, 38, 995–998, doi:10.1130/ G31457.1. Terzaghi, K. (1923), Die berechnung des durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen, Sitz. Akad. Wiss. Wien, 132, 125–138. Toda, S., R. S. Stein, K. Richards-Dinger, and S. Bozkurt (2005), Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer, J. Geophys. Res., 110, B05S16, doi:10.1029/2004JB003415. Townend, J., and M. D. Zoback (2000), How faulting keeps the crust strong, Geology, 28(5), 399, doi:10.1130/0091-7613(2000)28<399: HFKTCS>2.0.CO;2. Turcotte, D. L., and G. Schubert (1982), Geodynamics Applications of Continuum Physics to Geological Problems, 450 pp., John Wiley, New York. Utsu, T. (1961), A statistical study of the occurrence of aftershocks, Geophys. Mag., 30, 521–605. Velasco, A. A., S. Hernandez, T. Parsons, and K. Pankow (2008), Global ubiquity of dynamic earthquake triggering, Nat. Geosci., 1, 375–379, doi:10.1038/ngeo204. Wessel, P., and W. H. F. Smith (1998), New version of the Generic Mapping Tools released, Eos Trans. AGU, 79, 579, doi:10.1029/98EO00426. Wiemer, S., and M. Wyss (2000), Minimum magnitude of complete reporting in earthquake catalogs: Examples from Alaska, the western United States, and Japan, Bull. Seismol. Soc. Am., 90, 859–869, doi:10.1785/0119990114. Working Group CPTI (2004), Catalogo Parametrico dei Terremoti Italiani, Tech. Rep. CPTI04, Ist. Naz. di Geofis. e Vulcanologia, Bologna, Italy.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorMalagnini, L.en
dc.contributor.authorLucente, F.en
dc.contributor.authorDe Gori, P.en
dc.contributor.authorAkinci, A.en
dc.contributor.authorMunafò, I.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0001-5809-9945-
crisitem.author.orcid0000-0002-8717-1720-
crisitem.author.orcid0000-0001-8160-0849-
crisitem.author.orcid0000-0001-8073-3420-
crisitem.author.orcid0000-0002-9167-1883-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Malagnini_etal_JGR_2012.pdf4.27 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

46
checked on Feb 10, 2021

Page view(s) 50

710
checked on Apr 24, 2024

Download(s)

39
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric