Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8191
DC FieldValueLanguage
dc.contributor.authorallCarniel, S.; CNR-ISMARen
dc.contributor.authorallWarner, J. C.; USGSen
dc.contributor.authorallSclavo, M.; CNR-ISMARen
dc.contributor.authorallChigiato, J.; NURCen
dc.date.accessioned2012-10-13T23:36:41Zen
dc.date.available2012-10-13T23:36:41Zen
dc.date.issued2009en
dc.identifier.urihttp://hdl.handle.net/2122/8191en
dc.description.abstractAn accurate numerical prediction of the oceanic upper layer velocity is a demanding requirement for many applications at sea and is a function of several near-surface processes that need to be incorporated in a numerical model. Among them, we assess the effects of vertical resolution, different vertical mixing parameterization (the so-called Generic Length Scale –GLS– set of k–e, k–x, gen, and the Mellor–Yamada), and surface roughness values on turbulent kinetic energy (k) injection from breaking waves. First, we modified the GLS turbulence closure formulation in the Regional Ocean Modeling System (ROMS) to incorporate the surface flux of turbulent kinetic energy due to wave breaking. Then, we applied the model to idealized test cases, exploring the sensitivity to the above mentioned factors. Last, the model was applied to a realistic situation in the Adriatic Sea driven by numerical meteorological forcings and river discharges. In this case, numerical drifters were released during an intense episode of Bora winds that occurred in mid-February 2003, and their trajectories compared to the displacement of satellite- tracked drifters deployed during the ADRIA02-03 sea-truth campaign. Results indicted that the inclusion of the wave breaking process helps improve the accuracy of the numerical simulations, subject to an increase in the typical value of the surface roughness z0. Specifically, the best performance was obtained using aCH = 56,000 in the Charnok formula, the wave breaking parameterization activated, k–e as the turbulence closure model. With these options, the relative error with respect to the average distance of the drifter was about 25% (5.5 km/day). The most sensitive factors in the model were found to be the value of aCH enhanced with respect to a standard value, followed by the adoption of wave breaking parameterization and the particular turbulence closure model selected.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Inc NY Journalsen
dc.relation.ispartofOcean Modellingen
dc.relation.ispartofseries/30(2009)en
dc.subjectwave breakingen
dc.subjectturbulenceen
dc.subjectdrifteren
dc.titleInvestigating the impact of surface wave breaking on modeling the trajectories of drifters in the northern Adriatic Sea during a wind-storm eventen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber225-239en
dc.subject.INGV03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactionsen
dc.identifier.doi10.1016/j.ocemod.2009.07.001en
dc.relation.referencesBignami, F., Sciarra, R., Carniel, S., Santoleri, R., 2007. The variability of the Adriatic Sea coastal turbid waters from SeaWiFS imagery. J. Geophys. Res. 112, C03S10. doi:10.1029/2006JC003518. Booij, N., Ris, R.C., Holthuijsen, L.H., 1999. A third-generation wave model for coastal regions. Part I. Model description and validation. J. Geophys. Res. C4, 7649–7666. Budyko, K., 1974. Climate and Life. Academic Press. 508 pp. Breivik, O., Allen, A., 2008. An operational search and rescue model for the Norwegian Sea and the North Sea. Journal of Marine Systems 69 (1–2), 99–113. Breivik, O., Saetra, O., 2001. Real time assimilation of HF radar currents into a coastal ocean model. J. Mar. Syst. 28 (3–4), 161–182. Burchard, H., 2001. Simulating the wave-enhanced layer under breaking surface waves with two-equation turbulence models. J. Phys. Oceanogr. 31, 3133–3145. Burchard, H., Bolding, K., 2001. Comparative analysis of four second-moment turbulence closure models for the oceanic mixed layer. J. Phys. Oceanogr. 31, 1943–1968. Canuto, V.M., Howard, A., Cheng, J., Dubovikov, M.S., 2001. Ocean turbulence. Part I. One-point closure model-momentum and heat vertical diffusivities. J. Phys. Oceanogr. 31 (6), 1413–1426. Carniel, S., Umgiesser, G., Kantha, L.H., Monti, S., Sclavo, M., 2002. Tracking the drift of a human body in the coastal ocean using Numerical Prediction Models of the oceanic, atmospheric and wave conditions. Science & Justice 42 (3), 143–151. Carniel, S., Vichi, M., Sclavo, M., 2007. Sensitivity of a coupled physical-biological model to turbulence: high frequency simulations in a northern Adriatic station. Chemistry and Ecology 23 (2), 157–175. doi:10.1080/02757540701197903. Castellari, S., Griffa, A., Ozgokmen, T.M., Poulain, P.-M., 2001. Prediction of particle trajectories in the Adriatic Sea using Lagrangian data assimilation. J. Mar. Syst. 29, 33–50. Charnok, H., 1955. Wind stress on a water surface. Quart. J. R. Meteorol. Soc. 81, 639–640. Craig, P., 1996. Velocity profiles and surface roughness under breaking waves. J. Geophys. Res. 101, 1265–1277. Fairall, C.W., Bradley, E.F., Hare, J.E., Grachev, A.A., Edson, J.B., 2003. Bulk parameterisations of air–sea fluxes: updates and verification for the COARE algorithm. J. Clim. 16, 571–591. Galperin, B., Kantha, L.H., Hassid, S., Rosati, A., 1988. A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci. 45, 55–62. Gemmrich, J.R., Farmer, D.M., 1999. Near-surface turbulence and thermal structure in a wind driven sea. J. Phys. Oceanogr. 29, 480–499. Gemmrich, J.R., Farmer, D.M., 2004. Near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr. 34, 1067–1086. Haidvogel, D.B., Arango, H., Budgell, W.P., Cornuelle, B.D., Curchitser, E., Di Lorenzo, E., Fennel, K., Geyer, W.R., Hermann, A.J., Lanerolle, L., Levin, J., McWilliams, J.C., Miller, A.J., Moore, A.M., Powell, T.M., Shchepetkin, A.F., Sherwood, C.R., Signell, R.P., Warner, J.C., Wilkin, J., 2008. Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the Regional Ocean Modeling System. J. Comp. Phys. 227, 3595–3624. Haza, A.C., Griffa, A., Martin, P., Molcard, A., Özgökmen, T.M., Poje, A.C., Barbanti, R., Book, J.W., Poulain, P.-M., Rixen, M., Zanasca, P., 2007. Model-based directed drifter launches in the Adriatic Sea: results from the DART experiment. Geophys. Res. Lett. 34, L10605. doi:10.1029/2007GL029634. Jones, N.L., Monismith, S.G., 2008. Modeling the influence of wave-enhanced turbulence in a shallow tide- and wind-driven water column. J. Geophys. Res. 113, C03009. doi:10.1029/2007JC004246. Kantha, L.H., 2006. Comments on ‘‘Second-order turbulence closure models for geophysical boundary layers. A review of recent work”. Cont. Shelf Res. 26 (81), 9–822. Kantha, L.H., Carniel, S., 2003. Comments on ‘‘A generic length-scale equation for geophysical turbulence models” by L. Umlauf and H. Burchard. J. Mar. Res. 61 (5), 693–702. doi:10.1357/002224003771816007 Shchepetkin, A.F., McWilliams, J.C., 2003. A method for computing horizontal pressure-gradient force in an oceanic model with a non-aligned vertical coordinate. J. Geophys. Res. 108 (C3), 3090. doi:10.1029/2001JC001047. Shchepetkin, A.F., McWilliams, J.C., 2005. The regional ocean modelling system: a split-explicit, free-surface, topography-following-coordinates ocean model. Ocean Modell. 9, 347–404. Sherwood, C.R., Carniel, S., Cavaleri, L., Chiggiato, J., Das, H., Doyle, J.D., Harris, C.K., Niedoroda, A.W., Pullen, J., Reed, C.W., Russo, A., Sclavo, M., Signell, R.P., Traykovski, P., Warner, J.C., 2004. Sediment dynamics in the Adriatic Sea investigated with coupled models. Oceanography 17 (4), 46–57. Signell, R.P., Carniel, S., Terray, E.A., Burchard, H., 2002. The effect of wind wave breaking and vertical resolution on simulation of surface currents in 3D hydrodynamical models. Eos Trans. AGU 83 (4), Ocean Sci. Meet. Suppl., Abstract OS42B-134, Hawaii, USA. Signell, R.P., Carniel, S., Cavaleri, L., Chiggiato, J., Doyle, J., Pullen, J., Sclavo, M., 2005. Assessment of wind quality for oceanographic modeling in semi-enclosed basins. J. Mar. Syst. 53 (1–4), 217–233. doi:10.1016/j.marsys.2004.03.006. Song, Y., Haidvogel, D.B., 1994. A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comp. Phys. 115 (1), 228–244. Stacey, M.W., 1999. Simulation of the wind-forced near-surface circulation in knight inlet: a parameterization of the roughness length. J. Phys. Oceanogr. 29, 1363–1367.en
dc.description.obiettivoSpecifico3.7. Dinamica del clima e dell'oceanoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn1463-5003en
dc.relation.eissn1463-5011en
dc.contributor.authorCarniel, S.en
dc.contributor.authorWarner, J. C.en
dc.contributor.authorSclavo, M.en
dc.contributor.authorChiggiato, J.en
dc.contributor.departmentCNR-ISMARen
dc.contributor.departmentUSGSen
dc.contributor.departmentCNR-ISMARen
dc.contributor.departmentNURCen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUSGS-
crisitem.author.orcid0000-0002-0998-6473-
crisitem.classification.parent03. Hydrosphere-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2009_OM_Carniel_et_al.pdf1.45 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

68
checked on Feb 10, 2021

Page view(s) 20

286
checked on Apr 17, 2024

Download(s)

46
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric