Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8172
DC FieldValueLanguage
dc.contributor.authorallMaresca, R.; Università del Sannioen
dc.contributor.authorallNardone, L.; Università del Sannioen
dc.contributor.authorallPasquale, G.; Università del Sannioen
dc.contributor.authorallPinto, F.; Università del Sannioen
dc.contributor.authorallBianco, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2012-10-12T15:55:25Zen
dc.date.available2012-10-12T15:55:25Zen
dc.date.issued2012en
dc.identifier.urihttp://hdl.handle.net/2122/8172en
dc.description.abstractThe effects of surface geology on ground motion provide an important tool in seismic hazard studies. It is well known that the presence of soft sediments can cause amplification of the ground motion at the surface, particularly when there is a sharp impedance contrast at shallow depth. The town of Avellino is located in an area characterised by high seismicity in Italy, about 30 km from the epicentre of the 23 November 1980, Irpinia earthquake (M = 6.9). No earthquake recordings are available in the area. The local geology is characterised by strong heterogeneity, with impedance contrasts at depth. We present the results from seismic noise measurements carried out in the urban area of Avellino to evaluate the effects of local geology on the seismic ground motion. We computed the horizontal-to-vertical (H/V) noise spectral ratios at 16 selected sites in this urban area for which drilling data are available within the first 40 m of depth. A Rayleigh wave inversion technique using the peak frequencies of the noise H/V spectral ratios is then presented for estimating Vs models, assuming that the thicknesses of the shallow soil layers are known. The results show a good correspondence between experimental and theoretical peak frequencies, which are interpreted in terms of sediment resonance. For one site, which is characterised by a broad peak in the horizontal-to-vertical spectral-ratio curve, simple one-dimensional modelling is not representative of the resonance effects. Consistent variations in peak amplitudes are seen among the sites. A site classification based on shear-wave velocity characteristics, in terms of Vs30, cannot explain these data. The differences observed are better correlated to the impedance contrast between the sediments and basement. A more detailed investigation of the physical parameters of the subsoil structure, together with earthquake data, are desirable for future research, to confirm these data in terms of site response.en
dc.language.isoEnglishen
dc.publisher.nameSpringer Verlagen
dc.relation.ispartofPure and Applied Geophysicsen
dc.relation.ispartofseries/169(2012)en
dc.subjectAmbient noiseen
dc.subjectHVSRen
dc.subjectsite effectsen
dc.subjectAvellinoen
dc.titleEffects of Surface Geology on Seismic Ground Motion Deduced from Ambient-Noise Measurements, in the Town of Avellino, Irpinia Region (Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1173 – 1188en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysisen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.11. Seismic risken
dc.identifier.doi10.1007/s00024-011-0390-3en
dc.relation.referencesARAI, H., and TOKIMATSU, K. (2004), S-wave velocity profiling by inversion of microtremor H/V spectrum, Bull. Seism. Soc. Am., 94, 53–63. BARD, P.Y. (1999), Microtremor measurements: a tool for site effect estimation?, Proc of the 2nd Int. Symp. on Effects of Surface Geology on Seismic Motion, Yokohama, Japan, 1-3 December, 3, 1251–1282. BONNEFOY-CLAUDET, S., CORNOU, C., BARD, P.Y., and COTTON, F. (2006), H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations, Geophys. J. Int., 167, 827-837. BONNEFOY-CLAUDET, S., KO¨ HLER, A., CORNOU, C., WATHELET, M., and BARD, P.Y. (2008), Effects of Love waves on microtremor H/V ratio, Bull. Seism. Soc. Am., 98, 288–300. BONNEFOY-CLAUDET, S., BAIZE, S., BONILLA, L.F., BERGE-THIERRY, C., PASTEN, C., CAMPOS, J., VOLANT, P., and VERUGO, R. (2009), Site effect evaluation in the basin of Santiago de Chile using ambient noise measurements, Geophys. J. Int., 176, 925-937.BORCHERDT, R.D., WENTWORTH, C.M., JANSSEN, A., FUMAL, T., and GIBBS, J. (1991), Methodology for predictive GIS mapping of special study zone for strong ground motion in the San Francisco Bay region, CA., In Proc. Fourth Int. Cont. on Seismic Zonation, Earthquake Engineering Research Institute, Oakland, California, 545–552. CANDELA, M., and VIGGIANI, C. (1988), The effects of the Irpinia earthquake in the ancient centre of Avellino, Italy, Proc. Inter. Symp. IAEG, Athens, Greece, 1988. CASTELLARO, S., and MULARGIA, F. and ROSSI P.M. (2008), VS30: proxy for seismic amplification?, Seism. Res. Lett. 79, 540–542. CASTELLARO, S., and MULARGIA, F. (2010), How far from a building does the ground-motion free-field start?, Bull. Seism. Soc. Am., 100, 2080–2094. CLARK, S.P. (1966), Handbook of physical constants, Geol. Soc. Am., Mem., 97. COCCO, M, CHIARABBA, C., DI BONA, M., SELVAGGI, G., MARGHERITI, L., FREPOLI, A., LUCENTE, F.P., BASILI, A., JONGMANS, D., and CAMPILLO, M. (1999), The April 1996 Irpinia seismic sequence: evidence for fault interaction, Journ. Seismol., 3, 105–117. DI GIULIO, G., CORNOU, C., OHRNBERGER, M., WATHELET, M., and ROVELLI, A. (2006), Deriving wavefield characteristics and shear-velocity profiles from two-dimensional small-aperture arrays analysis of ambient vibrations in a small-size alluvial basin, Colfiorito, Italy, Bull. Seism. Soc. Am., 96, 1915–1933. DI GIULIO, G., IMPROTA, L., CALDERONI, G., and ROVELLI, A. (2008), A study of the seismic response of the city of Benevento (southern Italy) through a combined analysis of seismological and geological data, Engin. Geol., 97, 146–170. DI NOCERA, S., MATANO, F., PESCATORE, T., PINTO, F., QUARANTIELLO, R., SENATORE, M.R., and TORRE, M. (2006), Schema geologico del transetto Monti Picentini orientali—Monti della Daunia meridionali: unita` stratigrafiche ed evoluzione tettonica del settore esterno dell’Appennino meridionale, Boll. Soc. Geol. It., 125, 39–58. FA¨ H, D., KIND, F., and GIARDINI, D. (2001), A theoretical investigation of average H/V ratios. Geophys, J. Int., 145, 535–549. FA¨ H D., KIND F., and GIARDINI D. (2003), Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects, Journ. Seismol. 7, 449–467. GIULIVO, I., and SANTO, A. (1997), Stratigrafia del sottosuolo e problemi geomorfologico-applicativi della citta` di Avellino, ‘‘Geologia delle grandi aree urbane’’—Progetto strategico CNR. HERAK, M. (2008), ModelHVSR—a Matlab tool to model horizontal- to-vertical spectral ratio of ambient noise, Computers Geosci., 34, 1514–1526. HORIKE, M., ZHAO, B., and KAWASE, H. (2001), Comparison of site response characteristics inferred from microtremors and earthquake shear waves, Bull. Seism. Soc. Am., 91, 1526–1536. IBS-VON SEHT, M., and WOLHENBERG, J. (1999), Microtremor measurements used to map thickness of soft sediments, Bull. Seism. Soc. Am., 89, 250–259. KO¨ HLER A., OHRNBERGER M., SCHERBAUM F., STANGE S., and KIND F. (2004), Ambient vibration measurements in the southern Rhine Graben close to Basle, Ann. Geophys., 47, 1771–1781. KO¨ HLER, A., OHRNBERGER, M., and SCHERBAUM, F. (2006). The relative fraction of Rayleigh and Love waves in ambient vibration wave fields at different European sites, in 3rd Int. Symposium on the Effects of Surface Geology on Seismic Motion, Grenoble, France, Abstract 83.KONNO, K., and OHMACHI, T. (1998), Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremors, Bull. Seism. Soc. Am., 88, 228–241. KRAMER, S.L. (1996), Geotechnical Earthquake Engineering (Prentice Hall, 1996). LACHET, C., HATZFELD, D., BARD, P.Y., THEODULIDIS, N., PAPAIOANNOU, C., and SAVVAIDIS, A. (1996), Site effects and microzonation in the city of Thessaloniki (Greece). Comparison of different approaches, Bull. Seism. Soc. Am., 86, 1692–1703. LUZI, L., PUGLIA, R., PACOR, F., GALLIPOLI, M. R., BINDI, D., and MUCCIARELLI, M. (2011), Proposal for a soil classification based on parameters alternative or complementary to Vs,30. Bull Earthquake Eng., doi:10.1007/s10518-011-9274-2. MALISCHEWSKY P.G., and SCHERBAUM F. (2004), Love’s formula and H/V-ratio (ellipticity) of Rayleigh waves, Wave Motion, 40, 57–67. MARESCA R., GALLUZZO D., and DEL PEZZO, E. (2006), H/V spectral ratios and array techniques applied to ambient noise recorded in the Colfiorito Basin, central Italy, Bull. Seism. Soc. Am., 96, 490–505. MELETTI, C., and MONTALDO, V. (2007), Stime di pericolosita` sismica per diverse probabilita` di superamento in 50 anni: valori di ag. Progetto DPC-INGV S1 (2006), Deliverable D2, http:// esse1.mi.ingv.it/d2.html. MUCCIARELLI, M., and GALLIPOLI, M.R. (2006), Comparison between Vs30 and other estimates of site amplification in Italy, Conference on Earthquake Engineering and Seismology, Geneva, 3–8 Sept., no. 270. NAKAMURA, Y. (1989), A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, Q. Rept. Railway Tech. Res. Inst., 30, 25–33. NOGOSHI, M.,and IGARASHI, T. (1970), On the amplitude characteristics of microtremors (Part 1), J. Seism. Soc. Japan, 23, 264–280. NOGOSHI, M., and IGARASHI, T. (1971), On the amplitude characteristics of microtremor (Part 2), J. Seism. Soc. Japan, 24, 26–40. PAROLAI, S., BORMANN, P., and MILKREIT, C. (2002), New relationships between Vs, thickness of sediments, and resonance frequency calculated by the H/V ratio seismic noise for the Cologne area (Germany), Bull. Seism. Soc. Am., 92, 2521–2527. PILZ, M., PAROLAI, S., LEYTON, F., CAMPOS, J., and ZSCHAU, J. (2009), A comparison of site response techniques using earthquake dataand ambient seismic noise analysis in the large urban areas of Santiago de Chile, Geophys. J. Int., 178, 713–728. PILZ, M., PAROLAI, S., PICOZZI,M., WANG, R., LEYTON, F., CAMPOS, J., and ZSCHAU, J. (2010), Shear wave velocity model of the Santiago de Chile basin derived from ambient noise measurements: a comparison of proxies for seismic site conditions and amplification, Geophys. J. Int., 182, 355–367. RODRIGUEZ, V.H.S., and MIDORIKAWA, S. (2002), Applicability of the H/V spectral ratio of microtremors in assessing site effects on seismic motion, Earthq. Eng. Struct. Dynamics, 31, 261–279. SCHERBAUM F, HINZEN, K.G, and OHRNBERGER, M. (2003), Determination of shallow shear wave velocity profiles in the Cologne/ Germany area using ambient vibrations, Geophys. J. Int. 152, 597–612. SESAME (2004), Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations. Measurements, Processing and Interpretation. SESAME European Research Project WP12—D23.12. http://sesame-fp5.obs.ujf-grenoble.fr/ Papers/HV_User_Guidelines.pdf. SOURIAU, A., ROULLE´ , A., and PONSOLLES, C. (2007), Site effects in the city of Lourdes, France, from H/V measurements: implications for seismic-risk evaluation, Bull. Seism. Soc. Am., 97, 2118–2136. TOKIMATSU, K., and MIYADERA, Y. (1992), Characteristics of Rayleigh waves in microtremors and their relation to underground structures, J. Struct. Constr. Eng. AIJ 439, 81–87 (in Japanese, English abstract). WATHELET, M., JONGMANS, D., OHRNBERGER, M., and BONNEFOYCLAUDET, S. (2008), Array performances for ambient vibrations on a shallow structure and consequences over Vs inversion, J. Seismol., 12, 1–19. WEBER, E., CONVERTITO, V., IANNACCONE, G., ZOLLO, A., BOBBIO, A., CANTORE, L., CORCIULO, M., DI CROSTA, M., ELIA, L., MARTINO, C., ROMEO, A., and SATRIANO, C. (2007), An advanced seismic network in the southern Apennines (Italy) for seismicity investigations and experimentation with earthquake early warning, Seism. Res. Lett., 78, 622–634. WILLS, C.J., PETERSEN, M., BRYANT, W.A., REICHE, M., SAUCEDO, G.J., TAN, S., TAYLOR, G., and TREIMAN, J. (2000), A site-conditions map for California based in geology and shear-wave velocity, Bull. Seism. Soc. Am., 90, S187–S208.en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.obiettivoSpecifico4.1. Metodologie sismologiche per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0033-4553en
dc.relation.eissn1420-9136en
dc.contributor.authorMaresca, R.en
dc.contributor.authorNardone, L.en
dc.contributor.authorPasquale, G.en
dc.contributor.authorPinto, F.en
dc.contributor.authorBianco, F.en
dc.contributor.departmentUniversità del Sannioen
dc.contributor.departmentUniversità del Sannioen
dc.contributor.departmentUniversità del Sannioen
dc.contributor.departmentUniversità del Sannioen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.deptDipartimento di Studi Geologici ed Ambientali,Università degli Studi del Sannio, Benevento, Italy-
crisitem.author.deptUniversità del Sannio-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OV, Napoli, Italia-
crisitem.author.orcid0000-0002-5825-3604-
crisitem.author.orcid0000-0001-5400-7724-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Pageoph-OnlineFirst-03August2011.pdf1.59 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

7
checked on Feb 10, 2021

Page view(s) 50

415
checked on Apr 24, 2024

Download(s)

26
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric