Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8142
DC FieldValueLanguage
dc.contributor.authorallBrunori, C. A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallBignami, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallStramondo, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallBustos, E.; National University of Salta (Argentina). / Consejo Nacional de Investigaciones Científicas y Técnica (Argentina).en
dc.date.accessioned2012-10-10T15:28:40Zen
dc.date.available2012-10-10T15:28:40Zen
dc.date.issued2013en
dc.identifier.urihttp://hdl.handle.net/2122/8142en
dc.description.abstractInSAR (Interferometric Synthetic Aperture Radar) techniques are applied to investigate last two decades of surface deformation of the Cerro Blanco/Robledo Caldera (CBRC). The objective is the identification of deforming patterns that alter the shape of these complex structures when they show low or null activity. The joint analysis between results by using different methods over a long time span, represents a unique opportunity to improve knowledge of volcanic structures located in remote area and, for this, poorly or not monitored. In this work we identify displacement patterns over the volcanic area, by using both classical differential InSAR analysis, and A-InSAR (Advanced InSAR) analysis based on SAR data acquired by ERS-1/2 and ENVISAT sensors during the 1996-2010 time interval. The satellite-derived information allows us to characterize the deformation pattern that affected the CBRC and shows that the actively deforming CBRC is subsiding in the observed period. In order to figure out the deformation history of CBRC, we analyzed the four sub-periods 1992-1996, 1996-2000, and 2005-2010 by using standard differential InSAR technique, and the interval 2003-2007 by adopting an A-InSAR technique. Subsidence velocities of the CBRC caldera are about 2.6 cm/yr in the time interval 1992-1996 (measured with ERS descending data), 1.8 cm/yr in 1996-2000 (ERS descending data), 1.2 cm/yr in 2003-2007 (ENVISAT descending data),and finally, 0.87 cm/yr in 2005-2010 (ENVISAT ascending data). Moreover, outside the caldera and in particular in the NW area, we observe the presence of positive velocity values. Results show that: a) a decreasing subsidence rate might be related to the reduction of volcanic activity in correspondence of the CBRC; b) positive velocity signal, decreasing with time, might be interpreted as follows: - evidence of volcano structure lateral spreading, according to the velocity pattern distribution in this area and to the relative local flanks topographic convexity of the volcano structure; - uplift signal of this sector of mountain chain; - combination if the two mechanisms above.en
dc.language.isoEnglishen
dc.publisher.nameElsevier Scienceen
dc.relation.ispartofInternational Journal of Applied Earth Observation and Geoinformationen
dc.relation.ispartofseries/23 (2013)en
dc.subject: InSAR; A-InSAR; Deflation; Calderas; Volcanic structuresen
dc.title20 years of active deformation on volcano caldera: Joint analysis of InSAR and AInSAR techniquesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber279–287en
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformationsen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesyen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniquesen
dc.identifier.doi10.1016/j.jag.2012.10.003en
dc.relation.referencesAguirre-Diaz, G., Geyer, A., Martí, J. and Acocella, V., 2011. Improving and facilitating research on collapse. EOS, 92, 53 - 54. Amelung, F., Jonsson, S., Zebker, H., Segall, P., 2000. Widespread uplift and ‘‘trapdoor’’ faulting on Galapagos volcanoes observed with radar interferometry, Nature, 407, 993 – 996. Arnosio, M., Becchio, R., Viramonte, J.G., Groppelli, G., Norini G., Corazzato, C., 2005. Geología del Complejo Volcánico Cerro Blanco (26° 45’ LS- 67° 45’ LO), Puna Austral. 16º Congreso Geológico Argentino, La Plata., Actas 1: 851 – 858. Arnosio, M., Becchio, R., Viramonte, J., Groppelli, G., Norini, G., Corazzato C., 2005. Geologia del Complejo Volcánico Cerro Blanco (26°45’ S - 67°45’ O). XVI Congreso Geológico Argentino, La Plata. II, 851 - 858. Arnosio, M., Becchio, R., Viramonte, J. G., de Silva, S., Viramonte, J.M., (2008). Geocronología e isotopía del Complejo Volcánico Cerro Blanco: un sistema de calderas cuaternario (73-12Ka) en los Andes Centrales del Sur. 13 Congreso Geológico Argentino, Jujuy, 1, 134 - 135. Berardino, P., Fornaro, G., Lanari, R., Sansosti, E., 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sensing, 40, 11, 2375-2383. Baez, W., Arnosio, M., Viramonte, J.G., 2011. Análisis de facies y estudio de la fábrica magnética en la ignimbrita Campo de la Piedra Pómez, Puna Austral: Implicancias en sus mecanismos de transporte y depositación. XVIII Congreso Geológico Argentino, Neuquén 2011 Berrino, G., Rymer, H., Brown, G.C., Corado, C., 1992. Gravity-height correlations for unrest at calderas. J. Volcanol. Geotherm. Res. 53, 11 - 26. Biggs, J., Wright, T., Lu, Z., Parsons, B., 2007. Multi-interferogram method for measuring interseismic deformation: Denali Fault Alaska. GJI, 170, 1165 - 1179. Borgia, A., Aubert, M., Merle, O., van Wyk de Vries, B., 2010. What is a volcano? Geological Society of America Special Papers, 470, p. 1-9, doi:10.1130/2010.2470(01). Chang, W.‐L., Smith, R. B., Farrell, J. M., Puskas, C., 2010. An extraordinary episode of Yellowstone caldera uplift, 2004–2010, from GPS and InSAR observations. Geophys. Res. Lett. 37, L23302, doi:10.1029/2010GL045451. Costa, F., 2008. Residence times of silicic magmas associated with calderas. In: Caldera Volcanism: Analysis, Modelling and Response. Gottsmann J, Marti J (eds), Developments in Volcanology 10: 1 - 55. De Silva, S.L., Francis, P.W., 1991. Volcanoes of the Central Andes, ed. Springer-Verlag, New York. Di Filippo, M., Di Nezza, M., Colombi, A., Viramonte, J. G., Toro, B., 2008. Estructura gravimetrica del Complejo Volcanico Cerro blanco, Puna Austral, Argentina. XVII Congreso Geológico Argentino. Actas I: 203 - 204. D’Oreye, N., Gonzalez, P., Shule,r A., Oth, A., Bagalwa, M., Ekström, G., Kavotha, D., Kervyn, F., Lucas, C., Lukaya, F., Osodundu, E., Wauthier, C., Fernandez, J., 2010. Source parameters of the 2008 Bukavu-Cyangugu earthquake estimated from InSAR and teleseismic data. GJI, 184 (2), 934 - 948. Dzurisin, D., 2000. Volcano geodesy: Challenges and opportunities for the 21st century. Phil. Trans. R. Soc. Lond. A , 358, 1547 - 1566. Dzurisin, D. 2003. A comprehensive approach to monitoring volcano deformation as a window on the eruption cycle, Rev. Geophys. 41(1), 1001, doi:10.1029/2001RG000107. Farr, T. G., et al., 2007, The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004, doi:10.1029/2005RG000183. Ferretti, A., Prati, C., Rocca, F., 2001. Permanent scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sensing, 39(1), 8 - 20. Geyer, A., Martí, J., 2009. Stress fields controlling the formation of nested and overlapping calderas: Implications for the understanding of caldera unrest. Journal of Volcanology and Geothermal Research, 181, 185 - 195. Holohan, E. P., Schöpfer, M. P. J., Walsh, J. J., 2011. Mechanical and geometric controls on the structural evolution of pit crater and caldera subsidence. J. Geophys. Res. 116, B07202, doi:10.1029/2010JB008032. Hooper, A., Bekaert, D., Spaans, K., Arıkan, M., 2012. Recent advances in SAR interferometry time series analysis for measuring crustal deformation, Tectonophysics, 514 - 517, 1 - 13, doi:10.1016/j.tecto.2011.10.013. Hooper, A., 2008. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. GRL, 35, L16302, doi:10.1029/2008GL034654,2008. Holohan, E. P., Schöpfer, M. P. J., Walsh, J. J., 2011. Mechanical and geometric controls on the structural evolution of pit crater and caldera subsidence. J. Geophys. Res. 116, B07202, doi:10.1029/2010JB008032. Hutnak, M.S., Hurwitz, S. E., Ingebritsen, Hsieh, P.A., 2009. Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal fluid flow. J. Geophys. Res. 114, B04411, doi:10, 1029/2008JB006151. Kwoun, O. I., Z. Lu, C. Neal, Wicks, C. Jr., 2006. Quiescent deformation of the Aniakchak Caldera, Alaska mapped by InSAR. Geology, 34, 5 – 8. Lanari, R., Lundgren, P., Manzo, M., Casu, F., 2004, Satellite radar interferometry time series analysis of surface deformation for Los Angeles, California. Geophys. Res. Lett. 31, L23613, doi:10.1029/2004GL021294. Lundgren, P., Usai, S., Sansosti, E., Lanari, R., Tesauro, M., Fornaro, G., Berardino, P., 2001. Modeling surface deformation observed with synthetic aperture radar interferometry at Campi Flegrei caldera. J. Geophys. Res., 106, 19,355 – 19,366. Massonnet, D., Briole, P., Arnaud, A., 1995. Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature, 375, 567 - 570. Mason B.G, Pyle, D.M., Oppenheimer, C., 2004. The size and frequency of the largest explosive eruptions on Earth. Bull. Volcanol. 66, 735 - 748. doi:10.1007/s00445-004-0355-9. Massonnet, D., Feigl, K.L., 1998. Radar interferometry and its application to changes in the Earth's surface, Rev. Geophys., 36(4), 441 - 500, doi:10.1029/97RG03139. McTigue, D. F., 1987. Elastic stress and deformation near a finite spherical magma body: Resolution of the point source paradox. J. Geophys. Res., 92, 12,931 – 12,940. Merle, O., Borgia, A., 1996. Scaled experiments of volcanic spreading. J. Geophys. Res., 101(B6), 13, 805 – 13, 817. Montero Lopez, M.C., Hongn, F., Brod, J. F., Seggiaro, R., Marrett, R., Sudo, M., 2010. Magmatismo ácido del mioceno superior-cuaternario en el área de Cerro Blanco-La Hoyada, Puna Austral. Rev. Asoc. Geol. Argent., 67, 3, 329 - 348. Newhall C G, Dzurisin, D, 1988. Historical unrest at large calderas of the world. U S Geol Surv Bull. 1855 . Pinel, V., Hooper, A., De la Cruz-Reyna, S., Reyes-Davila, G., Doin, M. P., Bascou, P., 2010. Thechallenging retrieval of displacement field from InSAR data for andesitic stratovolcanoes : Case study of Popocatepetl and Colima Volcano, Mexico. J. Volc. Geotherm. Res. 200, 49 - 61,doi:10.1016/j.jvolgeores.2010.12.002. Philibosian, B., Simons, M., 2011. A Survey of Volcanic Deformation on JAVA Using ALOS PALSAR Interferometric Time Series. G-Cubed, 12, Q11004, doi:10.1029/2011GC003775. Pritchard, M. E., Simons, M., 2002. A satellite geodetic survey of large scale deformation of volcanic centres in the central Andes. Nature, 418, 167 - 170, doi:10.1038/nature00872. Pritchard, M. E., Simons, M., 2004. An InSAR-based survey of volcanic deformation in the central Andes. Geochem. Geophys. Geosyst. 5, Q02002, doi:10.1029/2003GC000610. Riller, U., Petrinovic, I., Ramelow, J., Strecker, M., Oncken, O., 2001. Late Cenozoic tectonism, collapse caldera and plateau formation in the central Andes. Earth Planet. Sci. Lett. 188, 299 - 311. Rosen, P.A., Hensley, S., Joughin, I.R., Li, F.K., Madsen, S.N., Rodriguez, E., Goldstein, R.M., 2000. Synthetic Aperture Radar Interferometry. Proceedings of the IEEE, 88, 3, 333 – 382. Seggiaro, R., Hongn, F., Folguera, A., Clavero, J., 2000. Hoja Geológica 2769 – II. Paso de San Francisco. Boletín 294. Programa Nacional de Cartas Geológicas. 1:250.000. SEGEMAR. Sheridan, M. F., Wohletz, K. H., 1983. Hydrovolcanism: Basic considerations and review. J. Volcanol. Geotherm. Res. 17, 1 - 29. Sigurdsson, H. S., Houghton, B., McNutt, S. R., Rymer, H., Stix, J., 2000. Encyclopedia of Volcanoes. San Diego, Calif. : Academic, c2000.ISBN: 9780126431407. Simkin, T., L. Siebert, 1994. Volcanoes of the world. Geoscience Press, Tucson, Arizona. Vilardo, G., Isaia, R., Ventura, G., De Martino, P., Terranova, C., 2010. InSAR Permanent Scatterer analysis reveals fault reactivation during inflation and deflation episodes at Campi Flegrei caldera. Rem. Sens.of Env., 114, 2373 - 2383, doi:10.1016/j.rse.2010.05.014. Viramonte, J; Castro Godoy, S.; Arnosio, J.; Becchio, Raúl; Poodts, M., 2005 a. El campo geotermal de la caldera del cerro Blanco: utilización de imágenes aster. Actas del Décimo Sexto CongresoGeológico Argentino, 2, 505 - 512. Viramonte, J., Arnosio, M., Becchio, R., Gropelli, G., Norini, G., Corazzatto, C., DiFillipo, M., Blanco, M., Eulillades, P., Poodts, M., Castro Godoy, S., Klotz, J., Asch, G.y Heit, B., 2005 b. Cerro Blanco Volcanic Complex: the youngest caldera system in the Southern Central Andes. A multidisciplinary Earth Science Project. 19 Colloquium on Latin American Geosciences. Potsdam. Terra Nostra(05/1): 19 LAK Postdam, 135. Wicks, C., Thatcher, W., Dzurisin, D., Svarc, J., 2006. Uplift, thermal unrest, and magma intrusion at Yellowstone caldera, observed with InSAR. Nature, 440, 72 - 75, doi:10.1038/nature04507. Zebker, H. A., Villasenor J., 1992. Decorrelation in interferometric radar echoes, IEEE Trans. Geosci. Remote Sens., 30, 950 - 59. Zebker, H.A., Rosen, P.A., Hensley, S., 1997. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J. Geophys. Res., 102(B4), 7547 - 7563. Zhou, X; Chang, N.-B., Li, S, 2009. Applications of SAR Interferometry in Earth and Environmental Science Research. Sensors, 9, 1876 - 1912; doi:10.3390/s90301876.en
dc.description.obiettivoSpecifico1.10. TTC - Telerilevamentoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.relation.issn0303-2434en
dc.relation.eissn1872-826Xen
dc.contributor.authorBrunori, C. A.en
dc.contributor.authorBignami, C.en
dc.contributor.authorStramondo, S.en
dc.contributor.authorBustos, E.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentNational University of Salta (Argentina). / Consejo Nacional de Investigaciones Científicas y Técnica (Argentina).en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptNational University of Salta (Argentina). / Consejo Nacional de Investigaciones Científicas y Técnica (Argentina).-
crisitem.author.orcid0000-0003-0862-8161-
crisitem.author.orcid0000-0002-8632-9979-
crisitem.author.orcid0000-0003-0163-7647-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
JAG-D-12-00246R1ManuscAccep4Pubb.pdfAccepted manuscript736 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

21
checked on Feb 10, 2021

Page view(s) 50

252
checked on Mar 27, 2024

Download(s) 20

313
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric