Please use this identifier to cite or link to this item:
http://hdl.handle.net/2122/8131
DC Field | Value | Language |
---|---|---|
dc.contributor.authorall | Mikhailov, A. V.; Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), Troitsk, Moscow Region 142190, Russia | en |
dc.contributor.authorall | Perrone, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia | en |
dc.contributor.authorall | Smirnova, N. V.; Institute of Geosphere Dynamics (IDG RAS), Lenin Avenue 38, Moscow 117334, Russia | en |
dc.date.accessioned | 2012-10-10T12:53:18Z | en |
dc.date.available | 2012-10-10T12:53:18Z | en |
dc.date.issued | 2012-06 | en |
dc.identifier.uri | http://hdl.handle.net/2122/8131 | en |
dc.description.abstract | Morphological analysis of foF2 variations for the periods of daytime positive disturbances over three ionospheric stations St. Petersburg (sub-auroral zone), Slough (middle latitudes), and Alma-Ata (middle-low latitudes) has confirmed the existence of two types of positive F2-layer disturbances with different morphology. Type I is referred to those followed by quiet or positively disturbed ionospheric conditions. They occur under low or moderate level of geomagnetic activity. Positive disturbances of type II are related to strong geomagnetic storms and they are followed by negative ionospheric disturbances. The two types manifest different occurrence frequency distribution and its dependence on latitude and level of geomagnetic activity. They also exhibit different duration and magnitude. This tells that two types of disturbances belong to different classes of events and may have different formation mechanisms. Millstone Hill ISR and digisonde hmF2 and foF2 observations for some selected periods of F2-layer positive disturbances of both types were analyzed. The original earlier developed self-consistent method to extract thermospheric parameters from ISR observations was used to estimate the contribution of various aeronomic parameters to the observed storm time F2-layer variations. Our analysis of a well-pronounced positive disturbances of type II on December 14, 2006 has confirmed the well-known concept by Pr ¨olss (1993a,b, 1995)—daytime midlatitude positive disturbances of type II are mainly produced by TADs and following them disturbed equatorward winds. However our calculations have shown that about half of the observed positive storm effect may be attributed to thermospheric parameter (neutral composition and temperature) variations. The type II of positive disturbances presents the first phase of a two-phase (positive/negative) ionospheric storm. For this reason their occurrence frequency distribution is similar to that for negative disturbances. The driving force for both disturbances is the same—the thermosphere heating in the auroral zone. Situation with positive disturbances of type I is more complicated. Electric fields on April 03, 2004, and neutral composition (mainly atomic oxygen) variations on April 11, 2000 were shown to be responsible for the observed positive storm effect. The difference in the two cases is presumably related with the localization (longitudinal sector) of the auroral heating. | en |
dc.language.iso | English | en |
dc.publisher.name | Elsevier Science Limited | en |
dc.relation.ispartof | Journal of atmospheric and solar-terrestrial physics | en |
dc.relation.ispartofseries | / 81-82 (2012) | en |
dc.subject | Ionospheric disturbances | en |
dc.subject | Thermospheric parameters | en |
dc.subject | ionospheric F2 region | en |
dc.title | Two types of positive disturbances in the daytime mid-latitude F2-layer: Morphology and formation mechanisms | en |
dc.type | article | en |
dc.description.status | Published | en |
dc.type.QualityControl | Peer-reviewed | en |
dc.description.pagenumber | 59-75 | en |
dc.subject.INGV | 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous | en |
dc.subject.INGV | 01. Atmosphere::01.02. Ionosphere::01.02.02. Dynamics | en |
dc.identifier.doi | 10.1016/j.jastp.2012.04.003 | en |
dc.relation.references | Appleton, E.V., Piggot, W.R., 1952. The morphology of storms in the F2 layer of the ionosphere I. Some statistical relationship. Journal of Atmospheric and Terrestrial Physics 2, 236–252. Balan, N., Shiokawa, K., Otsuka, Y., Kukuchi, T., Lekshmi, D.V., Kawamura, S., Bailey, G.J., 2010. A physical mechanism of positive ionospheric storms at low latitudes and midlatitudes. Journal of Geophysical Research 115, A02304, htt p://dx.doi.org/10.1029/2009JA014515. Balsley, B.B., Woodman, R.F, 1969. On the control of the F-region drift velocity by the E-region electric field; experimental evidence. Journal of Atmospheric and Terrestrial Physics 31, 865–867. Basu, S., Guhathakurta, B.K., Basu, D., 1975. Ionospheric response to geomagnetic storms at low midlatitudes. Annales Geophysicae 31, 497–505. Bauske, R., Pr¨olss, G.W., 1997. Modeling the ionospheric response to traveling atmospheric disturbances. Journal of Geophysical Research 102, 14,555–14,562. Bauske, R., Pr ¨ olss, G.W., 1998. Numerical simulation of long-duration positive ionospheric storm effects. Advances in Space Research 22 (1), 117–121. Belehaki, A., Tsagouri, I, 2002. On the occurrence of storm-induced nighttime ionization enhancements at ionospheric middle latitudes 107 http://dx.doi.or g/10.1029/2001JA005029Journal of Geophysical Research 107 http://dx.doi.or g/10.1029/2001JA005029. Bruinsma, S.L., Forbes, J.M., 2010. Large-scale traveling atmospheric disturbances (LSTADs) in the thermosphere inferred from CHAMP, GRACE, and SETA accelerometer data. Journal of Atmospheric and Solar-Terrestrial Physics 72, 1057–1066. 2010. Buonsanto, M.J., 1999. Ionospheric storms—a review. Space Science Reviews 88, 563–601. Buonsanto, M.J., Witasse, O.G., 1999. An updated climatology of thermospheric neutral winds and F region ion drifts above Millstone Hill. Journal of Geophysical Research 104 (A11), 24,675–24,687. Burns, A.G., T.L. Killeen, G.R. Carignan, and R.G. Roble (1995a), Large enhancements in the O/N2 ratio in the evening sector of the winter hemisphere during geomagnetic storms,Journal of Geophysical Research., 100, 14661-14671. Burns, A.G., Killeen, T.L., Deng, W., Carignan, G.R., Roble, R.G., 1995b. Geomagnetic storm effects in the low-to middle-latitude upper thermosphere. Journal of Geophysical Research 100, 14,673–14,691. Danilov, A.D., Lastovicka, J., 2001. Effects of geomagnetic storms on the ionosphere and atmosphere. International Journal of Geomagnetism and Aeronomy 3 (2), 201–224. David, M., Sojka, J.J., 2010. Single-day dayside density enhancements over Europe: a survey of a half-century of ionospheric data. Journal of Geophysical Research 115, A12311, http://dx.doi.org/10.1029/2010JA015711. Ding, F., Wan, W., Liu, L., Afraimovich, E.L., Voeykov, S.V., Perevalova, N.P., 2008. A statistical study of large-scale traveling ionospheric disturbances observed by GPS TEC during major magnetic storms over the years 2003–2005. Journal of Geophysical Research 113 http://dx.doi.org/10.1029/2008JA013037. A00A01. Evans, J.V., 1973. The causes of storm-time increases of the F-layer at midlatitudes. Journal of Atmospheric and Terrestrial Physics 35, 593–616. Evans, J.V., 1975. A review of F region dynamics. Reviews of Geophysics and Space Physics 13, 887–894. Essex, E.A., 1979. The effects of geomagnetic activity on the F2-region of the ionosphere. Journal of Atmospheric and Terrestrial Physics 41, 951–960. Fejer, B.G., Farley, D.T, Balsley, B.B., Woodman, R.F, 1976. Radar studies of anomalous velocity reversals in the equatorial ionosphere. Journal of Geophysical Research 81, 4621–4626. Field, P.R., Rishbeth, H., 1997. The response of the ionospheric F2-layer to geomagnetic activity: an analysis of worlwide data. Journal of Atmospheric and Solar-Terrestrial Physics 59, 163–180. Field, P.R., Rishbeth, H., Moffett, R.J., Idenden, D.W., Fuller-Rowell, T.J., Millward, G.H, Aylward, A.D., 1998. Modelling composition changes in F-layer storms. Journal of Atmospheric and Solar-Terrestrial Physics 60, 523–543. F¨ orster, M., Namgaladze, A.A., Yurik, R.Y., 1999. Thermospheric composition changes deduced from geomagnetic storm m odeling. Geophysical Research Letters 26, 2625–2628. Fuller-Rowell, T.J., Codrescu, M.V., Rishbeth, H., Moffett, R.J., Quegan, S., 1996. On the seasonal response of the thermosphere and ionosphere to geomagnetic storms. Journal of Geophysical Research 101, 2343–2353. Heelis, R.A., Sojka, J.J., David, M., Schunk, R.W., 2009. Storm time density enhancements in the middle-latitude dayside ionosphere. Journal of Geophysical Research 114, A03315, http://dx.doi.org/10.1029/2008JA013690. Himmelblau, D.M., 1972. Applied Nonlinear Programming. McGraw-Hill Book Company. Gardner, L.C., Schunk, R.W., 2010. Generation of traveling atmospheric disturbances during pulsating geomagnetic storms. Journal of Geophysical Research 115, A08314, http://dx.doi.org/10.1029/2009JA015129. Goncharenko, L.P., Foster, J.C., Coster, A.J., Huang, C., Aponte, N., Paxton, L.J., 2007. Observations of a positive storm phase on September 10, 2005. Journal of Atmospheric and Solar-Terrestrial Physics 69, 1253–1272. Huang, C.-S., Foster, J.C., Goncharenko, L.P., Erickson, P.J., Rideout, W., 2005. A strong positive phase of ionospheric storms observed by the Millstone Hill incoherent scatter radar and global GPS network. Journal of Geophysical Research 110, A06303, http://dx.doi.org/10.1029/2004JA010865. Hocke, K., Schlegel, K., 1996. A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982–1995. Annales Geophysicae 14, 917–940. Immel, T.J., Crowley, G., Craven, J.D., Roble, R.G., 2001. Dayside enhancements of thermospheric O/N2 following magnetic storm onset. Journal of Geophysical Research 106, 15,471–15,488. Jones, K.L., 1971. Storm time variation of F2-layer electron concentration. Journal of Atmospheric and Terrestrial Physics 33, 379–389. Judge, D.L., McMullin, D.R., Ogawa, H.S., Hovestadt, D., Klecker, B., Hilchenbach, M., M¨ obius, E., Canfield, L.R., Vest, R.E., Watts, R, Tarrio, C., K¨ uhne, M., Wurz, P., 1998. First solar EUV irradiances obtained from SOHO by the CELIAS/SEM. Solar Physics 177, 161–173. Khmyrov, G. M., I. A. Galkin, A. V. Kozlov, B. W. Reinisch, J. McElroy, C. Dozois, 2008. Exploring Digisonde Ionogram Data with SAO-X and DIDBase, in Radio Sounding and Plasma Physics, AIP Conference Proceedins 974, 175–185. 74 A.V. Mikhailov et al. / Journal of Atmospheric and Solar-Terrestrial Physics 81–82 (2012) 59–75 Kil, H., Paxton, L.J., Pi, X., Hairston, M.R., Zhang, Y., 2003. Case study of the 15 July 2000 magnetic storm effects on the ionosphere-driver of the positive ionospheric storm in the winter hemisphere. Journal of Geophysical Research 108, 1391, http://dx.doi.org/10.1029/2002JA009782. Kil, H., Kwak, Y.-S., Paxton, L.J., Meier, R.R., Zhang, Y., 2011. O and N2 disturbances in the F region during the 20 November 2003 storm seen from TIMED/GUVI. Journal of Geophysical Research 116, A02314, http://dx.doi.org/10.1029/ 2010JA016227. Lean, J.L., Woods, T.N., Eparvier, F.G., Meier, R.R., Strickland, D.J., Correira, J.T., Evans, J.S., 2011. Solar extreme ultraviolet irradiance: present, past, and future. Journal of Geophysical Research 116, A01102, http://dx.doi.org/10.1029/ 2010JA015901. Lei, J., Wang, W., Burns, A.G., Solomon, S.C., Richmond, A.D., Wiltberger, M., Goncharenko, L.P., Coster, A., Reinisch, B.W., 2008. Observations and simulations of the ionospheric and thermospheric response to the December 2006 geomagnetic storm: initial phase. Journal of Geophysical Research 113, A01314, http://dx.doi.org/10.1029/2007JA012807. Lei, J., Thayer, J.P., Lu, G., Burns, A.G., Wang, W., Sutton, E.K., Emery, B.A., 2011. Rapid recovery of thermosphere density during the October 2003 geomagnetic storms. Journal of Geophysical Research 116, A03306, http://dx.doi.org/ 10.1029/2010JA016164. Lu, G., Goncharenko, L.P., Richmond, A.D., Roble, R.G., Aponte, N., 2008. A dayside ionospheric positive storm phase driven by neutral winds. Journal of Geophysical Research 113, A08304, http://dx.doi.org/10.1029/2007JA0128935. Mansilla, G.A., 2008. Thermosphere-ionosphere response at middle and high latitudes during perturbed conditions: a case study. Journal of Atmospheric and Solar-Terrestrial Physics 70, 1448–1454. Martyn, D.F., 1953. Geo-morphology of F2-region ionospheric storms. Nature 171, 14–16. Matuura, N., 1972. Theoretical models of ionospheric storms. Space Science Reviews 13, 129–189. Mendillo, M., Klobuchar, J.A., 1975. Investigations of the ionospheric F region using multistation total electron content observations. Journal of Geophysical Research 80, 643–650. Mikhailov, A.V., Skoblin, M.G., F¨ orster, M., 1995. Daytime F2-layer positive storm effect at middle and lower latitudes. Annales Geophysicae 13, 532–540. Mikhailov, A.V., Foster, J.C., 1997. Daytime thermosphere above Millstone Hill during severe geomagnetic storms. Journal of Geophysical Research 102, 17,275–17,282. Mikhailov, A.V., F¨ orster, M., Skoblin, M.G., 1997. An estimate of the non-barometric effect in the [O] height distribution at low latitudes during magnetically disturbed periods. Journal of Atmospheric and Solar-Terrestrial Physics 59, 1209–1215. Mikhailov, A.V., Schlegel, K., 1997. Self-consistent modeling of the daytime electron density profile in the ionospheric F-region. Annales Geophysicae 15, 314–326. Mikhailov, A.V., F¨ orster, M., 1999. Some F2-layer effects during the January 06-11, 1997 CEDAR storm period as observed with the Millstone Hill incoherent scatter facility. Journal of Atmospheric and Solar-Terrestrial Physics 61, 249–261. Mikhailov, A.V., Schlegel, K., 2003. Geomagnetic storm effects at F1-layer heights from incoherent scatter observations. Annales Geophysicae 21, 583–596. Mikhailov, A.V., Lilensten, J., 2004. A revised method to extract thermospheric parameters from incoherent scatter observations. Annales Geophysicae, Supplement 47 (N2/3), 985–1008. Mikhailov, A.V., Depueva, A.H., Leschinskaya, T.Yu., 2004. Morphology of quiet time F2-layer disturbances: high and lower latitudes. International Journal of Geomagnetism and Aeronomy 5 (1–14), GI1006, http://dx.doi.org/10.1029/ 2003GI000058. Mikhailov, A.V., Depuev, V.H., Depueva, A.H., 2007. Synchronous NmF2 and NmE daytime variations as a key to the mechanism of quiet-time F2-layer disturbances. Annales Geophysicae 25, 483–493. Mikhailov, A.V., Perrone, L., 2011. On the mechanism of seasonal and solar cycle NmF2 variations: a quantitative estimate of the main parameters contribution using incoherent scatter radar observations. Journal of Geophysical Research 116, A03319, http://dx.doi.org/10.1029/2010JA016122. Numgaladze, A.A., F ¨ orster, M., Yurik, R.Y., 2000. Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model. Annales Geophysicae 18, 461–477. Nusinov, A.A., 1992. Models for prediction of EUV and X-ray solar radiation based on 10.7-cm radio emission. In: Donnely, R.F. (Ed.), Proceedins of the Workshop on Solar Electromagnetic Radiation for Solar Cycle 22, , Boulder, Co., July 1992. NOAA ERL. Boulder, Co, USA, pp. 354–359. Obayashi, T., 1964. Morphology of storms in the ionosphere. In: Odishaw, H (Ed.), Research in Geophysics, Vol. 1. MIT Press, Cambridge, MA, pp. 335–366. Obayashi, T., Matuura, N., 1972. Theoretical Models of F-Region Storms, Solar- Terrestrial Physics, Part IV, 199-211. Reidel Pub. Co. Dordrecht, Holland. Paznukhov, V.V., Altadill, D., Reinisch, B.W., 2009. Experimental evidence for the role of the neutral wind in the development of ionospheric storms in midlatitudes. Journal of Geophysical Research 114, A12319, http://dx.doi.or g/10.1029/2009JA014479. Petadella, N.M., Lei, J., Larson, K.M., Forbes, J.M., 2009. Observations of the ionospheric response to the 15 December 2006 geomagnetic storm: longduration positive storm effect. Journal of Geophysical Research 114, A12313, h ttp://dx.doi.org/10.1029/2009JA014568. Picone, J.M., Hedin, A.E., Drob, D.P., Aikin, A.C., 2002. NRLMSISE-00 empirical model of the atmosphere: statistical comparison and scientific issues. Journal of Geophysical Research 107, 1468, http://dx.doi.org/10.1029/2002JA009430. Pr ¨ olss, G.W., 1991. Thermosphere-ionosphere coupling during disturbed conditions. Journal of Geomagnetism and Geoelectricity 43 (Supplement), 537–549. Pr ¨ olss, G.W., 1993a. On explaining the local time variation of ionospheric storm effects. Annales Geophysicae 11, 1–9. Pr ¨ olss, G.W., 1993b. Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes. Journal of Geophysical Research 98, 5981–5991. Pr ¨ olss, G.W., 1995. Ionospheric F-region storms. In: Volland (Ed.), Handbook of Atmospheric Electrodynamics, Vol. 2. CRC Press, Boca Raton, pp. 195–248. Pr ¨ olss, G.W., 2004. Physics of the Earth’s Space Environment. Springer-Verlag, Berlin Heidelberg, pp. 513. Pr ¨ olss, G.W., Jung, M.J., 1978. Traveling atmospheric disturbances as a possible explanation for daytime positive storm effects of moderate duration at middle latitudes. Journal of Atmospheric and Terrestrial Physics 40, 1351–1354. Pr ¨ olss, G.W., von Zahn, U., 1977. Seasonal variations in the latitudinal structure of atmospheric disturbances. Journal of Geophysical Research 82, 5629–5632. Pr ¨ olss, G.W., von Zahn, U., 1978. On the local time variation of atmosphericionospheric disturbances. Space Research 18, 159–162. Pr ¨ olss, G.W., Werner, S., Codrescu, M.V., Fuller-Rowell, T.J., Burns, A.G, Killeen, T.L., 1998. The thermospheric–ionospheric storm of Dec 8,1982: model predictions and observations. Advances in Space Research 22 (1), 123–128. Pr ¨ olss, G.W., 2011. Density Perturbations in the Upper Atmosphere Caused by the Dissipation of Solar Wind Energy. Surveys in Geophysics 32, 101–195, http://d x.doi.org/10.1007/s10712-010-9104-0. Richards, P.G., Meier, R.R., Wilkinson, P.J., 2010. On the consistency of satellite measurements of thermospheric composition and solar EUV irradiance with Australian ionosonde electron density data. Journal of Geophysical Research 115, A10309, http://dx.doi.org/10.1029/2010JA015368. Rishbeth, H., 1991. F-region storms ad thermospheric dynamics. Journal of Geomagnetism and Geoelectricity 43 (Supplement), 513–524. Rishbeth, H., 1998. How the thermospheric circulation affects the ionospheric F2- layer. Journal of Atmospheric and Solar-Terrestrial Physics 60, 1385–1402. Rishbeth, H., Ordon, R., Rees, D., Fuller-Rowell, T.J., 1985. Modelling of thermospheric composition changes caused by a severe magnetic storm. Planetary and Space Science 33, 1283–1301. Rishbeth, H., Fuller-Rowell, T.J., Rees, D., 1987. Diffusive equilibrium and vertical motion in the thermosphere during a sever magnetic storm: a computational study. Planetary and Space Science 35, 1157–1165. Rishbeth, H., Heelis, R.A., Makela, J.J., Basu, S., 2010. Storming the Bastille: the effect of electric fields on the ionospheric F-layer. Annales Geophysicae 28, 977–981. Rodger, A.S., Wrenn, G.L., Rishbeth, H., 1989. Geomagnetic storms in the Antarctic F-region. II. Physical interpretation. Journal of Atmospheric and Terrestrial Physics 51, 851–866. Skoblin, M.G., Mikhailov, A.V., 1996. Some peculiarities of altitudinal distribution of atomic oxygen at low latitudes during magnetic storms. Journal of Atmospheric and Terrestrial Physics 58, 875–881. Strickland, D.J., Craven, J.D., Daniell Jr., R.E., 2001. Six days of thermospheric– ionospheric weather over the Northern Hemisphere in late September 1981. Journal of Geophysical Research 106. 30, 291–30, 306. Taeusch, D.R., Carignan, G.R., Reber, C.A., 1971. Neutral composition variation above 400 km during a magnetic storm. Journal of Geophysical Research 76, 8318–8325. Tsagouri, I., Belehaki, A., Moraitis, G., Mavromichalaki, H., 2000. Positive and negative ionospheric disturbances at middle latitudes during geomagnetic storms. Geophysical Research Letters 27, 3579–3582. Vikramkumar, B.T., Rao, P.B., Viswanathan, K.S., Reddy, C.A., 1987. Electric fields and currents in the equatorial electrojet deduced from VHF radar observations- III. Comparison of observed DH values with those estimated from measured electric fields. Journal of Atmospheric and Terrestrial Physics 49, 201–207. Wang, W., Lei, J., Burns, A.G., Solomon, S.C., Wiltberger, M., Xu, J., Zhang, Y., Paxton, L., Coster, A., 2010. Ionosoheric response to the initial phase of geomagnetic storms: common features. Journal of Geophysical Research 115, A07321, http: //dx.doi.org/10.1029/2009JA014461. Woods, T.N., Eparvier, F.G., Bailey, S.M., Chamberlin, P.C., Lean, J., Rottman, G.J., Solomon, S.C., Tobiska, W.K., Woodraska, D.L., 2005. Solar EUV experiment (SEE): mission overview and first results. Journal of Geophysical Research 110, A01312, http://dx.doi.org/10.1029/2004JA010765. Wrenn, G.L., Rodger, A.S., Rishbeth, H., 1987. Geomagnetic storms in the Antarctic F-region. I. Diurnal and seasonal patters for main phase effects. Journal of Atmospheric and Terrestrial Physics 49, 901–913. Zevakina, R.A., 1971. Ionospheric Disturbances. In: Ionospheric Disturbances and their Impact on Radio Communication. Nauka, Moscow, 3–26 (in Russian). Zevakina, R.A., M.V. Kiseleva, 1978. F2-Region Parameter Variations During Positive Disturbances Related to Phenomena in the Magnetosphere and Interplanetary Medium. In: The diagnostics and modelling of the ionospheric disturbances, Nauka, Moscow, 151–167 (in Russian). | en |
dc.description.obiettivoSpecifico | 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale | en |
dc.description.journalType | JCR Journal | en |
dc.description.fulltext | restricted | en |
dc.relation.issn | 1364-6826 | en |
dc.relation.eissn | 1879-1824 | en |
dc.contributor.author | Mikhailov, A. V. | en |
dc.contributor.author | Perrone, L. | en |
dc.contributor.author | Smirnova, N. V. | en |
dc.contributor.department | Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), Troitsk, Moscow Region 142190, Russia | en |
dc.contributor.department | Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia | en |
dc.contributor.department | Institute of Geosphere Dynamics (IDG RAS), Lenin Avenue 38, Moscow 117334, Russia | en |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairetype | article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | restricted | - |
crisitem.department.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.author.dept | Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), Troitsk, Moscow Region 142190, Russia | - |
crisitem.author.dept | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia | - |
crisitem.author.dept | Institute of Geosphere Dynamics (IDG RAS), Lenin Avenue 38, Moscow 117334, Russia | - |
crisitem.author.orcid | 0000-0003-4335-0345 | - |
crisitem.author.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.classification.parent | 01. Atmosphere | - |
crisitem.classification.parent | 01. Atmosphere | - |
Appears in Collections: | Article published / in press |
Files in This Item:
WEB OF SCIENCETM
Citations
11
checked on Feb 10, 2021
Page view(s) 20
246
checked on Sep 7, 2024
Download(s)
28
checked on Sep 7, 2024