Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8130
DC FieldValueLanguage
dc.contributor.authorallCagnoli, B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallRomano, G. P.; Università La Sapienzaen
dc.date.accessioned2012-10-10T12:50:13Zen
dc.date.available2012-10-10T12:50:13Zen
dc.date.issued2012en
dc.identifier.urihttp://hdl.handle.net/2122/8130en
dc.description.abstractExperiments are carried out by releasing angular rock fragments down a curved chute and by measuring the basal pressures that are exerted by the granular flows on the basal containing surface (the substrate). The purpose of these experiments is to understand the mechanisms of energy dissipation and interaction with the ground of rock avalanches and dense pyroclastic flows. Our data show that collisions due to particle agitation affect significantly the basal interaction of granular flows. In particular, our experiments reveal that particle agitation per unit of flow mass increases as grain size increases or as flow volume decreases (with all the other features the same). This is so because as grain size increases or as flow volume decreases (with all the other features the same), there are fewer particles in the flows and the agitation due to the interaction with the rough containing boundary surfaces penetrates relatively more inside the flows. The analysis of the experimental data generates a linear relationship between particle agitation (expressed as a dimensionless basal pressure deviation) and a parameter which is directly proportional to the square of grain size and inversely proportional to the cube root of flow volume. This relationship shows the intrinsic ability of the granular flows to dissipate more energy (larger particle agitation per unit of flow mass) or less energy (smaller particle agitation per unit of flow mass) as a function of flow volume and grain size.en
dc.language.isoEnglishen
dc.relation.ispartofJournal of geophysical researchen
dc.relation.ispartofseries/117 (2012)en
dc.subjectpyroclastic flowsen
dc.subjectbasal pressuresen
dc.titleGranular pressure at the base of dry flows of angular rock fragments as a function of grain size and flow volume: A relationship from laboratory experimentsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB10202en
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanismen
dc.identifier.doi10.1029/2012JB009374en
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorCagnoli, B.en
dc.contributor.authorRomano, G. P.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentUniversità La Sapienzaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptUniversità degli Studi di Bari-
crisitem.author.orcid0000-0003-3263-5345-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Cagnoli and Romano 2012b.pdfpaper1.79 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

11
checked on Feb 10, 2021

Page view(s) 50

228
checked on Mar 27, 2024

Download(s)

28
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric