Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8127
DC FieldValueLanguage
dc.contributor.authorallLucifora, S.; Dipartimento di Scienze Geologiche, Università Roma Tre, Largo San Leonardo Murialdo 1, IT-00146 Rome, Italyen
dc.contributor.authorallCifelli, F.; Dipartimento di Scienze Geologiche, Università Roma Tre, Largo San Leonardo Murialdo 1, IT-00146 Rome, Italyen
dc.contributor.authorallMattei, M.; Dipartimento di Scienze Geologiche, Università Roma Tre, Largo San Leonardo Murialdo 1, IT-00146 Rome, Italyen
dc.contributor.authorallSagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallCosentino, D.; Dipartimento di Scienze Geologiche, Università Roma Tre, Largo San Leonardo Murialdo 1, IT-00146 Rome, Italyen
dc.contributor.authorallRoberts, A. P.; Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australiaen
dc.date.accessioned2012-10-10T12:21:50Zen
dc.date.available2012-10-10T12:21:50Zen
dc.date.issued2012-10-05en
dc.identifier.urihttp://hdl.handle.net/2122/8127en
dc.description.abstractWe present paleomagnetic, rock magnetic and scanning electron microscope data from three upper Messinian stratigraphic sections from the Adana Basin (southern Turkey). The collected samples are from fine-grained units, which were deposited during the Messinian Salinity Crisis (within subchron C3r). Paleomagnetic results reveal an inconsistent polarity record, related to a mixture of magnetite and greigite that hinders determination of a reliable magnetostratigraphy. Three classes of samples are recognized on the basis of paleomagnetic results. The first is characterized by a single magnetization component, with normal polarity, that is stable up to 530–580 C and is carried by magnetite. The second is characterized by a single magnetization component, with reversed polarity, that is stable up to 330–420 C. This magnetization is due to greigite, which developed after formation of slumps and before tectonic tilting of the studied successions. The third is characterized by reversed polarity, which is stable up to 530–580 C. We interpret this component as a primary magnetization carried by fine-grained and magnetically stable detrital magnetite. Results indicate that in the Adana Basin the assumption that a primary magnetization is carried by magnetite, and a magnetic overprint carried by greigite, does not hold because a late magnetic overprint has also been found for magnetite-bearing samples. Our data illustrate the complexity of magnetostratigraphic reconstructions in successions characterized by variable mixtures of magnetic minerals with different magnetic stability that formed at different stages. We demonstrate the need to perform detailed magnetic mineralogy analyses when conducting magnetostratigraphic studies of clay-rich sediments from marine or lacustrine environments.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofGeochemistry, Geophysics, Geosystemsen
dc.relation.ispartofseries10 / 13 (2012)en
dc.subjectMessinianen
dc.subjectremagnetizationen
dc.subjectreversalsen
dc.subjectrock and mineral magnetismen
dc.subjectsouthern Turkeyen
dc.titleInconsistent magnetic polarities in magnetite-and greigite-bearing sediments: Understanding complex magnetizations in the late Messinian in the Adana Basin (southern Turkey)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberQ10002en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetismen
dc.identifier.doi10.1029/2012GC004248en
dc.relation.referencesAksu, A. E., J. Hall, and C. Yaltirak (2005a), Miocene to Recent tectonic evolution of the eastern Mediterranean: New pieces of the old Mediterranean puzzle, Mar. Geol., 221, 1–13, doi:10.1016/j.margeo.2005.03.014. Aksu, A. E., T. Calon, J. Hall, S. Mansfield, and D. Yasar (2005b), The Cilicia–Adana basin complex, Eastern Mediterranean: Neogene evolution of an active fore-arc basin in an obliquely convergent margin, Mar. Geol., 221, 121–159, doi:10.1016/j.margeo.2005.03.011. Babinszki, E., E. Márton, P. Márton, and L. F. Kiss (2007), Widespread occurrence of greigite in the sediments of Lake Pannon: Implications for environment and magnetostratigraphy, Palaeogeogr. Palaeoclimatol. Palaeoecol., 252, 626–636, doi:10.1016/j.palaeo.2007.06.001. Benning, L. G., R. T. Wilkin, and H. L. Barnes (2000), Reaction pathways in the Fe–S system below 100 C, Chem. Geol., 167, 25–51, doi:10.1016/S0009-2541(99)00198-9. Berner, R. A. (1969), Migration of iron and sulfur within anaerobic sediments during early diagenesis, Am. J. Sci., 267, 19–42, doi:10.2475/ajs.267.1.19. Berner, R. A. (1970), Sedimentary pyrite formation, Am. J. Sci., 268, 1–23, doi:10.2475/ajs.268.1.1. Berner, R. A. (1984), Sedimentary pyrite formation: An update, Geochim. Cosmochim. Acta, 48, 605–615, doi:10.1016/0016- 7037(84)90089-9. Borradaile, G., J. Mothersill, D. Tarling, and C. Alford (1986), Sources of magnetic susceptibility in a slate, Earth Planet. Sci. Lett., 76, 336–340, doi:10.1016/0012-821X(86)90084-1. Canfield, D. E., and R. A. Berner (1987), Dissolution and pyritization of magnetite in anoxic marine sediments, Geochim. Cosmochim. Acta, 51, 645–659, doi:10.1016/0016-7037(87) 90076-7. Chang, L., A. P. Roberts, Y. Tang, B. D. Rainford, A. R. Muxworthy, and Q. Chen (2008), Fundamental magnetic parameters from pure synthetic greigite (Fe3S4), J. Geophys. Res., 113, B06104, doi:10.1029/2007JB005502. CIESM (2008), The Messinian Salinity Crisis: From Mega- Deposits to Microbiology, CIESM Workshop Monogr., vol. 33, Monaco. Cifelli, F., M. Mattei, A. M. Hirt, and A. Gunther (2004a), The origin of tectonic fabrics in “undeformed” clays: The early stages of deformation in extensional sedimentary basins, Geophys. Res. Lett., 31, L09604, doi:10.1029/2004GL019609. Cifelli, F., F. Rossetti, M. Mattei, A. M. Hirt, R. Funiciello, and L. Tortorici (2004b), An AMS, structural and paleomagnetic study of Quaternary deformation in eastern Sicily, J. Struct. Geol., 26, 29–46, doi:10.1016/S0191-8141(03)00092-0. Cifelli, F., M. Mattei, M. Chadima, A. M. Hirt, and A. Hansen (2005), The origin of the tectonic lineation in extensional basins: Combined neutron texture and magnetic analysis on “undeformed” clays, Earth Planet. Sci. Lett., 235, 62–78. Cifelli, F., F. Rossetti, and M. Mattei (2007), The architecture of brittle postorogenic extension: Results froman integrated structural and paleomagnetic study in north Calabria (southern Italy), Geol. Soc. Am. Bull., 119, 221–239, doi:10.1130/ B25900.1. Cifelli, F., M. Mattei, M. Chadima, S. Lenser, and A. M. Hirt (2009), The magnetic fabric in “undeformed clays”: AMS and neutron texture analyses from the Rif Chain (Morocco), Tectonophysics, 466, 79–88, doi:10.1016/j.tecto.2008.08.008. Cipollari, P., et al. (2012), Easternmost Mediterranean evidence of the Zanclean flooding event and subsequent surface uplift, Adana Basin, Southern Turkey, Geol. Soc. Spec. Publ., doi:10.1144/SP372.5, in press. Cosentino, D., G. Darbaş, and K. Gürbüz (2010a), The Messinian salinity crisis in the marginal basins of the peri-Mediterranean orogenic systems: Examples from the central Apennines (Italy) and the Adana Basin (Turkey), Geophys. Res. Abstr., 12, 2462. Cosentino, D., G. Darbaş, E. Gliozzi, F. Grossi, K. Gürbüz, and A. Nazik (2010b), How did the Messinian salinity crisis impact the Adana Basin?, paper presented at 7th International Symposium on Eastern Mediterranean Geology, Çukurova Univ., Adana, Turkey, 18–22 Oct. Cosentino, D., G. Radeff, G. Darbaş, F. Ö. Dudas, K. Gürbüz, and T. F. Schildgen (2010c), Late Miocene geohistory of the Mut and Adana basins (southern Turkey): Insight for uplift of the southern margin of the Central Anatolia Plateau, paper presented at Tectonic Crossroads: Evolving Orogens of Eurasia-Africa-Arabia-GSA Global Meeting, Geol. Soc. Am., Ankara, Turkey, 2–4 Oct. Cosentino, D., T. F. Schildgen, P. Cipollari, C. Faranda, E. Gliozzi, N. Hudáčková, S. Lucifora, and M. R. Strecker (2012), Late Miocene surface uplift of the southern margin of the Central Anatolian Plateau, Central Taurides, Turkey, Geol. Soc. Am. Bull., 124, 133–145, doi:10.1130/B30466.1. Day, R., M. Fuller, and V. A. Schmidt (1977), Hysteresis properties of titanomagnetites: Grain-size and compositional dependence, Phys. Earth Planet. Inter., 13, 260–267, doi:10.1016/0031-9201(77)90108-X. Dekkers, M. J., H. F. Passier, and M. A. A. Schoonen (2000), Magnetic properties of hydrothermally synthesized greigite (Fe3S4)-II. High- and low-temperature characteristics, Geophys. J. Int., 141, 809–819, doi:10.1046/j.1365- 246x.2000.00129.x. Dunlop, D. J. (2002), Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data, J. Geophys. Res., 107(B3), 2056, doi:10.1029/2001JB000486. Emerson, S., and J. I. Hedges (1988), Processes controlling the organic carbon content of open ocean Sediments, Paleoceanography, 3, 621–634, doi:10.1029/PA003i005p00621. Fisher, R. (1953), Dispersion on a sphere, Proc. R. Soc. London, Ser. A, 217, 295–305, doi:10.1098/rspa.1953.0064. Florindo, F., and L. Sagnotti (1995), Palaeomagnetism and rock magnetism in the upper Pliocene Valle Ricca (Rome, Italy) section, Geophys. J. Int., 123, 340–354, doi:10.1111/ j.1365-246X.1995.tb06858.x. Fu, Y., T. von Dobeneck, C. Franke, D. Heslop, and S. Kasten (2008), Rock magnetic identification and geochemical process models of greigite formation in Quaternary marine sediments from the Gulf of Mexico (IODP Hole U1319A), Earth Planet. Sci. Lett., 275, 233–245, doi:10.1016/j.epsl.2008.07.034. Gliozzi, E., D. Cosentino, G. Darbas, F. Grossi, K. Gürbüz, and A. Nazik (2010), Late Messinian ostracod biozonation: Stratigraphical constraints for the base of the Loxoconcha mülleri Zone derived from central Apennine (Italy) and Adana Basin (southern Turkey) successions, paper presented at 7th International Symposium on Eastern Mediterranean Geology, Çukurova Univ., Adana, Turkey, 18–22 Oct. Griffin, L. D. (2002), Aridity and humidity: Two aspects of the late Miocene climate of North Africa and the Mediterranean, Palaeogeogr. Palaeoclimatol. Palaeoecol., 182, 65–91, doi:10.1016/S0031-0182(01)00453-9. Grossi, F., E. Gliozzi, and D. Cosentino (2011), Paratethyan ostracod immigrants mark the biostratigraphy of the Messinian Salinity Crisis, Joannea Geol. Palaont, 11, 66–68. Horng, C. S., M. Torii, K.-S. Shea, and S.-J. Kao (1998), Inconsistent magnetic polarities between greigite- and pyrrhotite/ magnetite-bearing marine sediments from the Tsailiao-chi section, southwestern Taiwan, Earth Planet. Sci. Lett., 164, 467–481, doi:10.1016/S0012-821X(98)00239-8. Hsü, K. J., W. B. F. Ryan, and M. Cita (1973), Late Miocene desiccation of the Mediterranean, Nature, 242, 240–244, doi:10.1038/242240a0. Hunger, S., and L. G. Benning (2007), Greigite: A true intermediate on the polysulfide pathway to pyrite, Geochem. Trans., 8, 1, doi:10.1186/1467-4866-8-1. Hüsing, S., F. Hilgen, H. Abdulaziz, and W. Krijgsman (2007), Completing the Neogene geological time scale between 8.5 and 12.5 Ma, Earth Planet. Sci. Lett., 253, 340–358, doi:10.1016/j.epsl.2006.10.036. Jelínek, V. (1981), Characterization of the magnetic fabric of rocks, Tectonophysics, 79, T63–T67, doi:10.1016/0040- 1951(81)90110-4. Jelínek, V., and V. Kropáček (1978), Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens, Stud. Geophys. Geod., 22, 50–62, doi:10.1007/ BF01613632. Jiang, W. T., C. S. Horng, A. P. Roberts, and D. R. Peacor (2001), Contradictory magnetic polarities in sediments and variable timing of neoformation of authigenic greigite, Earth Planet. Sci. Lett., 193, 1–12, doi:10.1016/S0012-821X(01) 00497-6. Kao, S.-J., C. S. Horng, A. P. Roberts, and K.-K. Liu (2004), Carbon–sulfur–iron relationships in sedimentary rocks from southwestern Taiwan: Influence of geochemical environment on greigite and pyrrhotite formation, Chem. Geol., 203, 153–168, doi:10.1016/j.chemgeo.2003.09.007. Kirschvink, J. L. (1980), The least-squares line and plane and the analysis of palaeomagnetic data, Geophys. J. R. Astron. Soc., 62, 699–718, doi:10.1111/j.1365-246X.1980.tb02601.x. Krijgsman, W., F. J. Hilgen, I. Raffi, F. J. Sierro, and Á. G. D. Annunzio (1999), Chronology, causes and progression of the Messinian salinity crisis, Nature, 400, 652–655, doi:10.1038/ 23231. Krs, M., F. Novák, M. Krsová, P. Pruner, L. Kouklíková, and J. Jansa (1992), Magnetic properties and metastability of greigite-smythite mineralization in brown-coal basins of the Krušné hory Piedmont, Bohemia, Phys. Earth Planet. Inter., 70, 273–287, doi:10.1016/0031-9201(92)90194-Z. Larrasoaña, J. C., A. P. Roberts, R. Musgrave, E. Gràcia, E. Piñero, M. Vega, and F. Martinez-Ruiz (2007), Diagenetic formation of greigite and pyrrhotite in gas hydrate marine sedimentary systems, Earth Planet. Sci. Lett., 261, 350–366, doi:10.1016/j.epsl.2007.06.032. Larrasoaña, J. C., M. Gómez-Paccard, S. Giralt, and A. P. Roberts (2011), Rapid locking of tectonic magnetic fabrics in weakly deformed mudrocks, Tectonophysics, 507, 16–25, doi:10.1016/j.tecto.2011.05.003. Liu, J., R. X. Zhu, A. P. Roberts, S. Q. Li, and J. H. Chang (2004), High-resolution analysis of early diagenetic effects on magnetic minerals in post-middle-Holocene continental shelf sediments from the Korea Strait, J. Geophys. Res., 109, B03103, doi:10.1029/2003JB002813. Lourens, L. J., F. J. Hilgen, I. Raffi, and C. Vergnaud-Grazzini (1996), Early Pleistocene chronology of the Vrica Section (Calabria, Italy), Paleoceanography, 11, 797–812, doi:10.1029/ 96PA02691. Lourens, L. J., F. J. Hilgen, J. Laskar, N. J. Shackleton, and D. Wilson (2004), The Neogene Period, in A Geological Time Scale 2004, edited by F. M. Gradstein, J. G. Ogg, and A. G. Smith, pp. 409–440, Cambridge Univ. Press, Cambridge, U. K. Lowrie, W. (1990), Identification of ferromagnetic minerals in a rock by coercitivity and unblocking temperature properties, Geophys. Res. Lett., 17, 159–162, doi:10.1029/ GL017i002p00159. Mattei, M., N. D’Agostino, I. Zananiri, D. Kondopoulou, S. Pavlides, and V. Spatharas (2004), Tectonic evolution of fault-bounded continental blocks: Comparison of paleomagnetic and GPS data in the Corinth and Megara basins (Greece), J. Geophys. Res., 109, B02106, doi:10.1029/ 2003JB002506. Muxworthy, A. R., and D. J. Dunlop (2002), First-order reversal curve (FORC) diagrams for pseudo-single-domain magnetites at high temperature, Earth Planet. Sci. Lett., 203, 369–382, doi:10.1016/S0012-821X(02)00880-4. Newell, A. J. (2005), A high-precision model of first-order reversal curve (FORC) functions for single-domain ferromagnets with uniaxial anisotropy, Geochem. Geophys. Geosyst., 6, Q05010, doi:10.1029/2004GC000877. Nowaczyk, N. R. (2011), Dissolution of titanomagnetite and sulphidization in sediments from Lake Kinneret, Israel, Geophys. J. Int., 187, 34–44, doi:10.1111/j.1365- 246X.2011.05120.x. Pike, C. R., A. P. Roberts, and K. L. Verosub (1999), Characterizing interactions in fine magnetic particle systems using first order reversal curves, J. Appl. Phys., 85, 6660–6667, doi:10.1063/1.370176. Pike, C. R., A. P. Roberts, M. J. Dekkers, and K. L. Verosub (2001a), An investigation of multi-domain hysteresis mechanisms using FORC diagrams, Phys. Earth Planet. Inter., 126, 11–25, doi:10.1016/S0031-9201(01)00241-2. Pike, C. R., A. P. Roberts, and K. L. Verosub (2001b), Firstorder reversal curve diagrams and thermal relaxation effects in magnetic particles, Geophys. J. Int., 145, 721–730, doi:10.1046/j.0956-540x.2001.01419.x. Porreca, M., and M. Mattei (2010), Tectonic and environmental evolution of Quaternary intramontane basins in Southern Apennines (Italy): Insights from palaeomagnetic and rock magnetic investigations, Geophys. J. Int., 182, 682–698, doi:10.1111/j.1365-246X.2010.04661.x. Porreca, M., M. Mattei, and G. Di Vincenzo (2009), Postdeformational growth of late diagenetic greigite in lacustrine sediments from southern Italy, Geophys. Res. Lett., 36, L09307, doi:10.1029/2009GL037350. Reynolds, R. L., M. L. Tuttle, C. A. Rice, N. S. Fishman, J. A. Karachewski, and D. M. Sherman (1994), Magnetization and geochemistry of greigite-bearing Cretaceous strata, North Slope basin, Alaska, Am. J. Sci., 294, 485–528, doi:10.2475/ ajs.294.4.485. Reynolds, R. L., J. G. Rosenbaum, P. V. Metre, M. Tuttle, and A. Goldin (1999), Greigite (Fe3S4) as an indicator of drought–The 1912–1994 sediment magnetic record from White Rock Lake, Dallas, Texas, USA, J. Paleolimnol., 21, 193–206, doi:10.1023/A:1008027815203. Richter, C., A. P. Roberts, J. S. Stoner, L. D. Benning, and C. T. Chi (1998),Magnetostratigraphy of Pliocene–Pleistocene sediments from the Eastern Mediterranean Sea, Proc. Ocean Drill. Program Sci. Results, 160, 61–73. Roberts, A. P. (1995), Magnetic properties of sedimentary greigite (Fe3S4), Earth Planet. Sci. Lett., 134, 227–236, doi:10.1016/0012-821X(95)00131-U. Roberts, A. P., and G. M. Turner (1993), Diagenetic formation of ferrimagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand, Earth Planet. Sci. Lett., 115, 257–273, doi:10.1016/0012- 821X(93)90226-Y. Roberts, A. P., and R. Weaver (2005), Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4), Earth Planet. Sci. Lett., 231, 263–277, doi:10.1016/j.epsl. 2004.11.024. Roberts, A. P., R. L. Reynolds, K. L. Verosub, and D. P. Adam (1996), Environmental magnetic implications of greigite (Fe3S4) formation in a 3 million year lake sediment record from Butte Valley, Northern California, Geophys. Res. Lett., 23, 2859–2862, doi:10.1029/96GL02831. Roberts, A. P., J. S. Stoner, and C. Richter (1999), Diagenetic magnetic enhancement of sapropels from the eastern Mediterranean Sea, Mar. Geol., 153, 103–116, doi:10.1016/ S0025-3227(98)00087-5. Roberts, A. P., C. R. Pike, and K. L. Verosub (2000), Firstorder reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples, J. Geophys. Res., 105, 28,461–28,475, doi:10.1029/2000JB900326. Roberts, A. P., Q. Liu, C. J. Rowan, L. Chang, C. Carvallo, J. Torrent, and C.-S. Horng (2006), Characterization of hematite (a-Fe2O3), goethite (a-FeOOH), greigite (Fe3S4), and pyrrhotite (Fe7S8) using first-order reversal curve diagrams, J. Geophys. Res., 111, B12S35, doi:10.1029/2006JB004715. Roberts, A. P., L. Chang, C. J. Rowan, C. S. Horng, and F. Florindo (2011), Magnetic properties of sedimentary greigite (Fe3S4): An update, Rev. Geophys., 49, RG1002, doi:10.1029/2010RG000336. Robertson, A. H. F. (1998), Mesozoic-Tertiary tectonic evolution of the easternmost Mediterranean area: Integration of marine and land evidence, Proc. Ocean Drill. Program Sci. Results, 160, 723–782. Rochette, P. (1987), Magnetic susceptibility of the rock matrix related to magnetic fabric studies, J. Struct. Geol., 9, 1015–1020, doi:10.1016/0191-8141(87)90009-5. Ron, H., N. R. Nowaczyk, U. Frank, M. J. Schwab, R. Naumann, B. Striewski, and A. Agnon (2007), Greigite detected as dominating remanence carrier in Late Pleistocene sediments, Lisan formation, from Lake Kinneret (Sea of Galilee), Israel, Geophys. J. Int., 170, 117–131, doi:10.1111/ j.1365-246X.2007.03425.x. Rowan, C. J., and A. P. Roberts (2006), Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: Unravelling complex magnetizations in Neogene marine sediments from New Zealand, Earth Planet. Sci. Lett., 241, 119–137, doi:10.1016/j.epsl.2005.10.017. Rowan, C. J., and A. P. Roberts (2008), Widespread remagnetizations and a new view of Neogene tectonic rotations within the Australia-Pacific plate boundary zone, New Zealand, J. Geophys. Res., 113, B03103, doi:10.1029/2006JB004594. Rowan, C. J., A. P. Roberts, and T. Broadbent (2009), Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: A new view, Earth Planet. Sci. Lett., 277, 223–235, doi:10.1016/j.epsl. 2008.10.016. Sagnotti, L., and A. Winkler (1999), Rock magnetism and palaeomagnetism of greigite-bearing mudstones in the Italian peninsula, Earth Planet. Sci. Lett., 165, 67–80, doi:10.1016/ S0012-821X(98)00248-9. Sagnotti, L., F. Speranza, A. Winkler, M. Mattei, and R. Funiciello (1998), Magnetic fabric of clay sediments from the external northern Apennines (Italy), Phys. Earth Planet. Inter., 105, 73–93, doi:10.1016/S0031-9201(97)00071-X. Sagnotti, L., A. P. Roberts, R. Weaver, K. L. Verosub, F. Florindo, C. R. Pike, T. Clayton, and G. S. Wilson (2005), Apparent magnetic polarity reversals due to remagnetization resulting from late diagenetic growth of greigite from siderite, Geophys. J. Int., 160, 89–100, doi:10.1111/j.1365- 246X.2005.02485.x. Sampalmieri, G., A. Iadanza, P. Cipollari, D. Cosentino, and S. Lo Mastro (2010), Palaeoenvironments of the Mediterranean Basin at the Messinian hypersaline/hyposaline transition: Evidence from natural radioactivity and microfacies of post-evaporitic successions of the Adriatic sub-basin, Terra Nova, 22, 239–250, doi:10.1111/j.1365-3121.2010.00939.x. Schildgen, T. F., D. Cosentino, B. Bookhagen, S. Niedermann, C. Yıldırım, H. Echtler, H. Wittmann, and M. R. Strecker (2012a), Multi-phased uplift of the southern margin of the Central Anatolian plateau, Turkey: A record of tectonic and upper mantle processes, Earth Planet. Sci. Lett., 317–318, 85–95, doi:10.1016/j.epsl.2011.12.003. Schildgen, T. F., D. Cosentino, A. Caruso, R. Buchwaldt, C. Yıldırım, S. A. Bowring, B. Rojay, H. Echtler, and M. R. Strecker (2012b), Surface expression of eastern Mediterranean slab dynamics: Neogene topographic and structural evolution of the southwest margin of the Central Anatolian Plateau, Turkey, Tectonics, 31, TC2005, doi:10.1029/ 2011TC003021. Snowball, I. F. (1997a), Gyroremanent magnetization and the magnetic properties of greigite-bearing clays in southern Sweden, Geophys. J. Int., 129, 624–636, doi:10.1111/ j.1365-246X.1997.tb04498.x. Snowball, I. F. (1997b), The detection of single-domain greigite (Fe3S4) using rotational remanent magnetization (RRM) and the effective gyro field (Bg): Mineral magnetic and palaeomagnetic applications, Geophys. J. Int., 130, 704–716, doi:10.1111/j.1365-246X.1997.tb01865.x. Stephenson, A., and I. F. Snowball (2001), A large gyromagnetic effect in greigite, Geophys. J. Int., 145, 570–575, doi:10.1046/j.0956-540x.2001.01434.x. Tauxe, L., N. Kylstra, and C. Constable (1991), Bootstrap statistics for paleomagnetic data, J. Geophys. Res., 96, 11,723–11,740, doi:10.1029/91JB00572. Thompson, R., and T. D. J. Cameron (1995), Palaeomagnetic study of Cenozoic sediments in North Sea boreholes: An example of a magnetostratigraphic conundrum in a hydrocarbon producing area, Geol. Soc. Spec. Publ., 98, 223–236, doi:10.1144/GSL.SP.1995.098.01.13. Torii, M., K. Fukuma, C. S. Horng, and T. Q. Lee (1996), Magnetic discrimination of pyrrhotite- and greigite-bearing sediment samples, Geophys. Res. Lett., 23, 1813–1816, doi:10.1029/96GL01626. Ünlügenç, U. C. (1993), Controls on Cenozoic sedimentation in the Adana Basin, southern Turkey, PhD thesis, Dep. of Earth Sciences and Geography, Keele Univ., Keele, U. K. Vasiliev, I., M. J. Dekkers, W. Krijgsman, C. Franke, C. G. Langereis, and T. A. T. Mullender (2007), Early diagenetic greigite as a recorder of the palaeomagnetic signal in Miocene- Pliocene sedimentary rocks of the Carpathian foredeep (Romania), Geophys. J. Int., 171, 613–629, doi:10.1111/ j.1365-246X.2007.03560.x. Vasiliev, I., C. Franke, J. D. Meeldijk, M. J. Dekkers, C. G. Langereis, and W. Krijgsman (2008), Putative greigite magnetofossils from the Pliocene epoch, Nat. Geosci., 1, 782–786, doi:10.1038/ngeo335. Wilkin, R. T., and H. L. Barnes (1997), Formation processes of framboidal pyrite, Geochim. Cosmochim. Acta, 61, 323–339, doi:10.1016/S0016-7037(96)00320-1. Winklhofer, M., and G. T. Zimanyi (2006), Extracting the intrinsic switching field distribution in perpendicular media: A comparative analysis, J. Appl. Phys., 99, 08E710, doi:10.1063/1.2176598. Winklhofer, M., R. K. Dumas, and K. Liu (2008), Identifying reversible and irreversible magnetization changes in prototype patterned media using first- and second-order reversal curves, J. Appl. Phys., 103, 07C518, doi:10.1063/1.2837888.en
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issnISSN: 1525-2027en
dc.relation.eissn1525-2027en
dc.contributor.authorLucifora, S.en
dc.contributor.authorCifelli, F.en
dc.contributor.authorMattei, M.en
dc.contributor.authorSagnotti, L.en
dc.contributor.authorCosentino, D.en
dc.contributor.authorRoberts, A. P.en
dc.contributor.departmentDipartimento di Scienze Geologiche, Università Roma Tre, Largo San Leonardo Murialdo 1, IT-00146 Rome, Italyen
dc.contributor.departmentDipartimento di Scienze Geologiche, Università Roma Tre, Largo San Leonardo Murialdo 1, IT-00146 Rome, Italyen
dc.contributor.departmentDipartimento di Scienze Geologiche, Università Roma Tre, Largo San Leonardo Murialdo 1, IT-00146 Rome, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentDipartimento di Scienze Geologiche, Università Roma Tre, Largo San Leonardo Murialdo 1, IT-00146 Rome, Italyen
dc.contributor.departmentResearch School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptRoma Tre University-
crisitem.author.deptUniversità degli studi di Roma TRE-
crisitem.author.deptUniversità degli studi di Roma TRE-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptDipartimento di Scienze Geologiche, Universita` 'Roma Tre', Rome, Italy-
crisitem.author.deptNational Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, UK-
crisitem.author.orcid0000-0003-3944-201X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Lucifora et al 2012 G3 Vol 13 No 10.pdf2.4 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

8
checked on Feb 10, 2021

Page view(s) 20

299
checked on Apr 20, 2024

Download(s)

26
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric