Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8095
DC FieldValueLanguage
dc.contributor.authorallLangridge, R. M.; GNS Scienceen
dc.contributor.authorallBasili, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallBasher, L.; Landcare Research NZ Ltden
dc.contributor.authorallWells, A. P.; McLennan Rd, R D Hawea, Luggate, New Zealanden
dc.date.accessioned2012-10-09T07:59:25Zen
dc.date.available2012-10-09T07:59:25Zen
dc.date.issued2012-06-26en
dc.identifier.urihttp://hdl.handle.net/2122/8095en
dc.description.abstractLake Poerua is a small, shallow lake that abuts the scarp of the Alpine Fault on the West Coast of New Zealand’s South Island. Radiocarbon dates from drowned podocarp trees on the lake floor, a sediment core from a rangefront alluvial fan, and living tree ring ages have been used to deduce the late Holocene history of the lake. Remnant drowned stumps of kahikatea (Dacrycarpus dacrydioides) at 1.7–1.9m water depth yield a preferred time-ofdeath age at 1766–1807 AD, while a dryland podocarp and kahikatea stumps at 2.4–2.6m yield preferred time-of-death ages of ca. 1459–1626 AD. These age ranges are matched to, but offset from, the timings of Alpine Fault rupture events at ca. 1717 AD, and either ca. 1615 or 1430 AD. Alluvial fan detritus dated from a core into the toe of a rangefront alluvial fan, at an equivalent depth to the maximum depth of the modern lake (6.7 m), yields a calibrated age of AD 1223–1413. This age is similar to the timing of an earlier Alpine Fault rupture event at ca. 1230AD±50 yr. Kahikatea trees growing on rangefront fans give ages of up to 270 yr, which is consistent with alluvial fan aggradation following the 1717AD earthquake. The elevation levels of the lake and fan imply a causal and chronological link between lake-level rise and Alpine Fault rupture. The results of this study suggest that the growth of large, coalescing alluvial fans (Dry and Evans Creek fans) originating from landslides within the rangefront of the Alpine Fault and the rise in the level of Lake Poerua may occur within a decade or so of large Alpine Fault earthquakes that rupture adjacent to this area. These rises have in turn drowned lowland forests that fringed the lake. Radiocarbon chronologies built using OxCal show that a series of massive landscape changes beginning with fault rupture, followed by landsliding, fan sedimentation and lake expansion. However, drowned Kahikatea trees may be poor candidates for intimately dating these events, as they may be able to tolerate water for several decades after metre-scale lake level rises have occurred.en
dc.description.sponsorshipFRST project Impacts of Plate Tectonics in New Zealand (PLT): Alpine Fault earthquake geology (PGST Contract CO5X0702).en
dc.language.isoEnglishen
dc.publisher.nameCopernicus Publications on behalf of the European Geosciences Unionen
dc.relation.ispartofNat. Hazards Earth Syst. Sci.en
dc.relation.ispartofseries/12 (2012)en
dc.subjectAlpine faulten
dc.subjectdrowned foresten
dc.subjectLake Poeruaen
dc.subjectNew Zealanden
dc.titleLate Holocene landscape change history related to the Alpine Fault determined from drowned forests in Lake Poerua, Westland, New Zealanden
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber2051-2064en
dc.identifier.URLwww.nat-hazards-earth-syst-sci.net/12/2051/2012/en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.02. Geochronologyen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.03. Geomorphologyen
dc.identifier.doi10.5194/nhess-12-2051-2012en
dc.relation.referencesAdams, J.: Paleoseismicity of the Alpine fault seismic gap, Geology, 8, 72–76, 1980. Alloway, B. V., Lowe, D. J., Barrell, D. J. A., Newnham, R. M., Almond, P. C., Augustinus, P. C., Bertler, N. A. N., Carter, L., Litchfield, N. J., McGlone, M. S., Shulmeister, J., Vandergoes, M. J., Williams, P. W., and NZ-INTIMATE members: Towards a climate event stratigraphy for New Zealand over the past 30 000 years (NZ-INTIMATE project), J. Quaternary Sci., 22, 9– 35, 2007. Barrell, D. J. A., Andersen, B. G., and Denton, G. H.: Glacial geomorphology of the central South Island, New Zealand, Lower Hutt: GNS Science, GNS Science monograph, 27. 2 v., 2011. Basher, L., Wilmshurst, J., and Moar, N.: Progress report – Alpine Fault history and hazards, Landcare Research New Zealand, Lincoln, Unpublished Report, 1997. Berryman, K. R., Beanland, S., Cooper, A. F., Cutten, H. N., Norris, R. J., andWood, P. R.: The Alpine Fault, New Zealand: variation in Quaternary structural style and geomorphic expression, Annales Tectonicae, 5, 126–163, 1992. Berryman, K., Almond, P., Villamor, P., Read, S., Tonkin, P., and Alloway, B.: Alpine Fault ruptures shape the geomorphology of Westland, New Zealand: Data from the Whataroa catchment, Geomorphology 2009, ANZIAG 7th International Conference on Geomorphology, Melbourne, 2009. Berryman, K. R., Cooper, A., Norris, R., Villamor, P., Sutherland, R., Langridge, R., Wright, T., Schermer, E., and Biasi, G. P.: Late Holocene rupture history of the Alpine Fault in South Westland, New Zealand, Bull. Seism. Soc. Am., 102, 620–638, doi:10.1785/0120110177, 2012. Biasi, G. and Weldon, R. J.: Quantitative refinement of calibrated C-14 Distributions, Quaternary Res., 41, 1–18, 1994. Bronk, R.: OxCal Program, v. 4.1.7, Radiocarbon Accelerator Unit, University of Oxford, UK, available at: https://c14.arch.ox.ac.uk/ embed.php?File=oxcal.html, 2012. Cavinato, G. P., Gliozzi, E., and Mazzini, I.: Two lacustrine episodes during the late Pliocene-Holocene evolution of the Rieti Basin (Central Apennines, Italy), in: Gierlowski-Kordesch, edited by: Gierlowski-Kordesch, E. H., and Kelts, K. R., Lake basins through time and space, AAPG Studies in Geology #46, 527– 534, The American Association of Petroleum Geologists, USA, 2000. Clague, J. J.: Evidence for large earthquakes at the Cascadia Subduction Zone, Rev. Geophys., 35, 439–460, 1997. Cox, S. C. and Sutherland, R.: Regional geologic framework of South Island, New Zealand, and its significance for understanding the active plate boundary, in: A continental plate boundary: tectonics at South Island, edited by: Okaya, D., Stern, T. and Davey, F., New Zealand, Geophysical Monograph, 175, 19–46, 2007. Cullen, L. E., Duncan, R. P., Wells, A., and Stewart, G. H.: Floodplain and regional scale variation in earthquake effects on forests, Westland, New Zealand, J. Roy. Soc. N. Z., 33, 693–701, 2003. Dawson, J. and Lucas, R.: New Zealand native trees, Craig Potton Publishing, Nelson, New Zealand, 2011. De Mets, C., Gordon, G., Argus, D. F., and Stein, S.: Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophys. Res. Lett., 21, 2191–2194, 1994. Golder Associates: Geotechnical Site Suitability Assessment for Proposed Subdivision at Lake Poerua, Westland. Ref. # R06812016-02-V2, 2007. Goldfinger, C.: Subaqueous paleoseismology, in: Paleoseismology, edited by: McCalpin, J. P., 2nd Edn., Elsevier Inc., 119–170, 2009. Hancox, G. T., Perrin, N. D., and Dellow, G. D.: Recent studies of earthquake-induced landsliding, ground damage, and MM intensity in New Zealand, Bull. N. Z. Soc. Earthq. Engg., 35, 59–95, 2002. Hibsch, C., Alvarado, A., Yepes, H., Bebrier, M., and Perez, V. H.: Holocene Seismicity and tectonic activity of the Quito Fault (Ecuador): A paleoseismic history recoded in lacustrine sediments, Third ISAG Meeting, St. Malo, France, 1996. Howarth, J., Fitzsimons, S. J., Norris, R. J., Jacobsen, G. E., and Strong, D. T.: Reconstructing earthquake-driven erosion in the Southern Alps, New Zealand using the sedimentary record, American Geophysical Union, Fall Meeting, San Francisco, Calif., USA, 2011. Irwin, J.: Lake Ianthe: Lake Poerua bathymetry, 1:8000, N.Z. Oceanographic Institute Chart, Lake Series, 1982. Jacoby, G. C., Bunker, D. E., and Benson, B. E.: Tree-ring evidence for an A.D. 1700 Cascadia earthquake in Washington and northern Oregon, Geology, 25, 999–1002, doi:10.1130/0091- 7613, 1997. Kagan, E., Stein, M., Agnon, A., and Neumann, F.: Intrabasin paleoearthquake and quiescence correlation of the late Holocene Dead Sea, J. Geophys. Res., 116, B04311, doi:10.1029/2010JB007452, 2011. Keefer, D. K.: Landslides caused by earthquakes, Geol. Soc. Am. Bull., 95, 406–421, 1984. Korup, O., McSaveney, M. J., and Davies, T. R. H.: Sediment generation and delivery from large historic landslides in the Southern Alps, New Zealand, Geomorphology, 61, 189–207, 2004. Langridge, R. M. and Berryman, K. R.: Morphology and slip rate of the Hurunui section of the Hope Fault, South Island, New Zealand, N. Z. J. Geol. Geophys., 48, 43–58, 2005. Langridge, R. M. and McSaveney, M.: Updated review of proposed Lake Poerua subdivision, Grey District, GNS Science Consultancy Report 2008/11, 2008. Langridge, R. M., Pezzopane, S. K., andWeldon, R. J.: Slip rate, recurrence intervals and paleoearthquakes for the Ana River Fault, central Oregon, Friends of the Pleistocene, 9th Annual Pacific Northwest Cell Field Trip Volume, 2001. Langridge, R., Duncan, R., Almond, P., and Robinson, R.: Indicators of paleoseismic activity along the western Hope Fault, GNS Science Consultancy Report 2006/151, 2007. Langridge, R. M., Villamor, P., Almond, P., Basili, R., Hemphill- Haley, M. and Ries, W.: Late Holocene paleoseismicity of the Australia-Pacific plate boundary in central South Island: The Alpine to Hope Fault transition. Geological Society of America Abstracts with Programs, 41, 691 pp., Portland, Oregon, 2009. Langridge, R. M., Villamor, P., Basili, R., Almond, P., Martinez- Diaz, J. J., and Canora, C.: Revised slip rates for the Alpine fault at Inchbonnie: Implications for plate boundary kinematics of South Island, New Zealand, Lithosphere, 2, 139–152, doi:10.1130/L88.1, 2010. McCalpin J. P.: Paleoseismology, 2nd Edn., Elsevier Inca., 613 pp., 2009. McCormac, F. G., Hogg, A. G., Blackwell, P. G., Buck, C. E., Higham, T. F. G., and Reimer, P. J.: SHCAL04 Southern Hemisphere calibration 0–11.0 kyr BP: Radiocarbon, 46, 1087–1092, 2004. Marco, S., Stein, M., Agnon, A., and Ron, H.: Long-term earthquake clustering: A 50,000-year paleoseismic record in the Dead Sea Graben, J. Geophys. Res,. 101, 6179–6191, 1996. Marco, S., Hartal, M., Hazan, N., Lev, L., and Stein, M.: Archaeology, history, and geology of the 749 AD earthquake, Dead Sea Transform, Geology, 31, 665–668, doi:10.1130/G19516.1, 2003. Negrini, R. M.: Pluvial lake sizes in the northwestern Great Basin throughout the Quaternary Period, in: Great Basin Aquatics Systems History, edited by: Currey, D., Madsen, D., and Hershler, R., Smithson, Contr. Earth Sci., Smithsonian Press, 31, 17–59, 2002. Nelson, A. R., Atwater, B. F., Bobrowsky, P. T., Bradley, L., Clague, J. J., Carver, G. A., Darienzo, M. E., Grant, W. C., Krueger, H. W., Sparks, R., Stafford, T. W., and Stuiver, M.: Radiocarbon evidence for extensive plate-boundary rupture about 300 years ago at the Cascadia subduction zone, Nature, 378, 371– 374, doi:10.1038/378371a0, 1995. Nathan, S., Rattenbury, M. R., and Suggate, R. P.: Geology of the Greymouth area: Institute of Geological and Nuclear Sciences 1: 250 000 geological map 12, 1 sheet + 65 pp., Lower Hutt, New Zealand: Institute of Geological and Nuclear Sciences, 2002. Nichols, G.: Sedimentology and stratigraphy, 2nd Edn., Wiley- Blackwell, 419 pp., 2009. Norris, R. J. and Cooper, A. F.: Late Quaternary slip rates and slip partitioning on the Alpine Fault, New Zealand, J. Struct. Geol., 23, 507–520, 2001. Pearce, A. J. and Watson, A.: Effects of earthquake induced landslides on sediment budget and transport over a 50-year period, Geology, 14, 52–55, 1986. Philibosian, B., Fumal, T., and Weldon, R.: San Andreas Fault Earthquake Chronology and Lake Cahuilla History at Coachella, California. Bull. Seismol. Soc. Am., 101, 13–38, 2011. Reid, I. and Frostick, L.: Late Pleistocene rhythmite sedimentation at the margin of the Dead Sea Trough: a guide to paleoflood frequency, in: Geomorphology and sedimentology of lakes and reservoirs, edited by: McManus, J. and Duck, R. W., John Wiley and Sons, Chichester, England, 1993. Rhoades, D. A. and Van Dissen, R. J.: Estimates of the time-varying hazard of rupture of the Alpine Fault, allowing for uncertainties, N. Z. J. Geol. Geophys., 46, 479–488, 2003. Sims, J.: Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments, Tectonophysics, 29, 141–152, 1975. Smith, G. I.: Late Pliocene and Pleistocene Searles Lake, California, USA, in: Lake basins through time and space, edited by: Gierlowski-Kordesch, E. H. and Kelts, K. R., AAPG Studies in Geology #46, The American Association of Petroleum Geologists, USA, 591–596, 2000. Stuiver, M. and Polach, H. A.: Discussion: Reporting of 14C data, Radiocarbon, 19, 355–363, 1977. Suggate, R. P.: Late Pleistocene geology of the northern part of the South Island, New Zealand, New Zealand Geological Survey Bulletin 77, N. Z. Dept. of Sci. Industr. Res., Wellington, New Zealand, 91 pp., 1965. Suggate, R. P. and Waight, T. E.: Geology of the Kumara-Moana area, scale 1:50 000: Institute of Geological and Nuclear Sciences geological map 24, 1 sheet + 124 pp., 1999. Sutherland, R., Berryman, K. R., and Norris, R. J.: Quaternary slip rate and geomorphology of the Alpine fault: implications for the kinematics and seismic hazard in southwest New Zealand, Geol. Soc. Am. Bull., 118, 464–474, 2006. Sutherland, R., Eberhart-Phillips, D., Harris, R. A., Stern, T., Beavan, J., Ellis, S., Henrys, S., Cox, S., Norris, R. J., Berryman, K. R., Townend, J., Bannister, S., Pettinga, J., Leitner, B., Wallace, L., Little, T. A., Cooper, A. F., Yetton, M., and Stirling, M.: Do great earthquakes occur on the Alpine Fault in central South Island, New Zealand?, in: A continental plate boundary: tectonics at South Island, New Zealand, edited by: Okaya, D., Stern, T. and Davey, F., Geophysical Monograph, 175, 235–251, 2007. Van Dissen, R. and Yeats, R.: Hope fault, Jordan thrust, and uplift of the Seaward Kaikoura Range, New Zealand, Geology, 19, 393– 396, 1991. von Haast, H. F.: The life and times of Sir Julius von Haast, Avery Press Limited, New Plymouth, New Zealand, 1142 pp. and maps, 1948. Wardle, P.: The kahikatea (Dacrycarpus dacrydioides) forest of south Westland, Proc. N. Z. Ecol. Soc., 21, 62–71, 1974. Wellman, H. W.: New Zealand quaternary tectonics, Geol. Runds., 43, 248–257, 1955. Wells, A. and Goff, J.: Coastal dunes in Westland, New Zealand, provide a record of paleoseismic activity on the Alpine Fault, Geology, 35, 731–734, 2007. Wells, A., Duncan, R. P., and Stewart, G. H.: Forest dynamics in Westland, New Zealand: the importance of large, infrequent earthquake-induced disturbance, J. Ecol., 89, 1006–1018, 2001. Wells, A., Yetton, M. D., Duncan, R. P., and Stewart, G. H.: Prehistoric dates of the most recent Alpine fault earthquakes, New Zealand, Geology, 27, 995–998, 1999. Yetton, M. D.: Progress in understanding the paleoseismicity of the central and northern Alpine Fault,Westland, New Zealand, N. Z. J. Geol. Geophys., 41, 475–483, 1998. Yetton, M. D.: The probability and consequences of the next Alpine Fault earthquake, South Island, New Zealand: Doctor of Philosophy thesis, Dept. of Geological Sciences, University of Canterbury, Christchurch, New Zealand, 2000. Yetton, M. D. and Wells, A.: Earthquake rupture history of the Alpine fault over the last 500 years, in: Geologically Active – Proceedings of the 11th IAEG Congress. Auckland, New Zealand, 5–10 September 2010, edited by: Williams, A. L., Pinches, G. M., Chin, C. Y., McMorran, T. J., and Massey, C. I., Taylor and Francis Group, London, 2010.en
dc.description.obiettivoSpecifico3.2. Tettonica attivaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorLangridge, R. M.en
dc.contributor.authorBasili, R.en
dc.contributor.authorBasher, L.en
dc.contributor.authorWells, A. P.en
dc.contributor.departmentGNS Scienceen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentLandcare Research NZ Ltden
dc.contributor.departmentMcLennan Rd, R D Hawea, Luggate, New Zealanden
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptGNS SCIENCE, P.O. BOX 30-368, LOWER HUTT 5010, NEW ZEALAND-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptLandcare Research NZ Ltd-
crisitem.author.deptMcLennan Rd, R D Hawea, Luggate, New Zealand-
crisitem.author.orcid0000-0002-1213-0828-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
2012_Langridge_etal_NHESS.pdfmain post-print article14.02 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

9
checked on Feb 10, 2021

Page view(s) 50

192
checked on Apr 17, 2024

Download(s) 50

156
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric