Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8028
DC FieldValueLanguage
dc.contributor.authorallTondi, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallCavazzoni, C.; CINECA, Interuniversity Computing Centre, Via Magnanelli 6/3, 40033 Casalecchio di Reno (BO), Italyen
dc.contributor.authorallDanecek, P.; Univ Granada, Inst Andaluz Geofis, E-18071 Granada, Spainen
dc.contributor.authorallMorelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.date.accessioned2012-08-24T06:52:22Zen
dc.date.available2012-08-24T06:52:22Zen
dc.date.issued2012-11en
dc.identifier.urihttp://hdl.handle.net/2122/8028en
dc.description.abstractTo obtain accurate and reliable estimations of the major lithological properties of the rock within a studied volume, geophysics uses the joint information provided by different geophysical datasets (e.g. gravimetric, magnetic, seismic). Representation of the different types of information entering the problem using probability density functions can provide the mathematical framework to formulate their combination. The maximum likelihood estimator of the resulting joint posterior probability density functions leads to the solution of the problem. However, one key problem appears to limit the use of this solver to an extensive range of real applications: information coming from potential fields that implies the presence of dense matrices in the resolving estimator. It is well known that dense matrix systems rapidly challenge both the algorithms and the computing platforms, and are not suited to high-resolution 3D geophysical analysis. In this study, we propose a procedure that allows us to obtain fast and reliable solutions of the joint posterior probability density functions in the presence of large gravity datasets and using sophisticated model parametrization. As it is particularly CPUconsuming, this 3D problem makes use of parallel computing to improve the performance and the accuracy of the simulations. Analysis of the correctness of the results, and the performance on different parallel environments, shows the portability and the efficiency of the code. This code is applied to a real experiment, where we succeed in recovering a 3D shear-wave velocity and density distribution within the upper mantle of the European continent, satisfying both the seismological and gravity data. On a multiprocessor machine, we have been able to handle forward and inverse calculations with a dense matrix of 215.66 Gb in 18 min, 20 s and 20 min, 54 s, respectively.en
dc.description.sponsorshipNERIES INFRAST-2.1-026130, MERG-CT-2007-046522en
dc.language.isoEnglishen
dc.publisher.nameElsevier Science Limiteden
dc.relation.ispartofComputers & geosciencesen
dc.relation.ispartofseries/48 (2012)en
dc.subjectParallelen
dc.subjectDense matrixen
dc.subjectBlock-cyclic distributionen
dc.subjectInverse problemen
dc.subjectProbability density functionen
dc.subjectScaLAPACKen
dc.subjectGravity fielden
dc.subjectShear-wave velocity structureen
dc.subjectDensity structureen
dc.titleParallel ‘large’ dense matrix problems: application to 3D joint inversion of seismological and gravity dataen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber143-156en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processesen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomaliesen
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropyen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.03. Inverse methodsen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementationen
dc.identifier.doi10.1016/j.cageo.2012.05.026en
dc.relation.referencesAnderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., MCKenney, A., Ostrouchov, S., Sorensen, D., 1992. LAPACK Users’s Guide. SIAM, Philadelphia, PA, 235 pp. Aki, K., Richards, P.G., 1980. Quantitative Seismology. W.H. Freeman & Co, San Francisco 700 pp. Artemieva, I., 2003. Lithospheric structure, composition, and thermal regime of the East European Craton: implications for the subsidence of the Russian platform. Earth and Planetary Science Letters 213, 431–446. Birch, F., 1964. Density and composition of mantle and core. Journal of Geophysical Research 69 (20), 4377–4384. Bosch, M., 1999. Lithologic tomography: from plural geophysical data to lithology estimation. Journal of Geophysical Research 104 (B1), 749–766. Boschi, L., Ekstr +om, G., Kustowski, B., 2004. Multiple resolution surface wave tomography: the Mediterranean basin. Geophysical Journal International 157, 293–304. Brocher, T.M., 2005. Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bulletin of the Seismological Society of America 95 (6), 2081–2092. Camacho, A.G., Montesinos, F.G., Vieira, R., 1997. A three dimensional gravity inversion applied to Sao Miguel Island (Azores). Journal of Geophysical Research 102, 7717–7730. Choi, J., Demmel, J., Dhillon, I., Dongarra, J., Ostrouchov, S., Petitet, A., Stanley, K., Walker, D., Whaley, R.C., 1996. ScaLAPACK: a portable linear algebra library for distributed memory computers—design issues and performance. Computer Physics Communications 97, 1–15. Choi, J., Dongarra, J., Walker, D., 1994. PB-BLAS: a set of parallel block basic linear algebra subroutines. In: Proceedings of Scalable High Performance Computing Conference. IEEE Computer Society Press, pp. 534–541. Chung, D.H., 1972. Birch’s law: why is it so good? Science 177, 261–263. Edelman, A., 1993. Large dense numerical linear algebra in 1993, the parallel computing influence. Journal of Supercomputing Applications 7, 113–128. Gallardo, L.A., Maju, M.A., 2004. Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints. Journal of Geophysical Research 109, B03311, http://dx.doi.org/10.1029/2003JB002716. Jordan, T.H., 1978. Composition and development of the continental tectosphere. Nature 274, 544–548. Kaban, M.K., Schwintzer, P., Artemieva, I.M., Mooney, W.D., 2003. Density of the continental roots: compositional and thermal contributions. Earth and Planetary Science Letters 209, 53–69. Karato, S., 1993. Importance of anelasticity in the interpretation of seismic tomography. Geophysical Research Letters 20, 1623–1626, http://dx.doi.org/ 10.1029/93GL01767. Karato, S., Karki, B.B., 2001. Origin of lateral variation of seismic wave velocities and density in the deep mantle. Journal of Geophysical Research 106 (B10), 21,771–21,783. Li, Y., Oldenburgh, D.W., 1996. 3-D inversion of magnetic data. Geophysics 61, 394–408. Lines, L.R., Schultz, A.K., Treitel, S., 1988. Cooperative inversion of geophysical data. Geophysics 53, 8–20. Molinari, I., Morelli, A., 2011. EPCrust: a reference crustal model for the European plate. Geophysical Journal International 185, 352–364. Moorkamp, M., Jones, A., Fishwick, S., 2010. Joint inversion of receiver functions, surface wave dispersion, and magnetotelluric data. Journal of Geophysical Research 115, B04318. Newman, G.A., Alumbaugh, D.L., 1997. Three dimensional massively parallel electromagnetic inversion, II, analysis of a crosswell electromagnetic experiment. Geophysical Journal International 128, 355–363. Pilidou, S., Priestley, K., Gudmundsson, O., Debayle, E., 2004. Upper mantle S-wave speed heterogeneity and anisotropy beneath the North Atlantic from regional surface wave tomography: the Iceland and Azores plumes. Geophysical Journal International 159, 1057–1076. Piromallo, C., Morelli, A., 2003. P wave tomography of the mantle under the Alpine–Mediterranean area. Journal of Geophysical Research 108 (B2), 2065 http://dx.doi.org/10.1029/2002JB001757. Poha´ nka, V., 1998. Optimum expression for computation of the gravity field of a polyhedral body with linearly increasing density. Geophysical Prospecting 46, 391–404. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W., 1986. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge, UK. Ritsema, J., van Heijst, H.J., Woodhouse, J.H., 1999. Complex shear wave velocity structure imaged beneath Africa and Iceland. Science 286, 1925–1928. Schivardi, R., Morelli, A., 2009. Surface wave tomography in the European and Mediterranean region. Geophysical Journal International 177, 1050–1066. Schivardi, R., Morelli, A., 2011. EPmantle: a three-dimensional transversely isotropic model of the upper mantle under the European Plate. Geophysical Journal International 185, 469–484. Tapley, B.D., Bettadpur, S., Watkins, M., Reigber, C., 2004. The gravity recovery and climate experiment: mission overview and early results. Geophysical Research Letters 31 (L09607), 555, http://dx.doi.org/10.1029/2004GL019920. Tarantola, A., 2005. Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, Philadelphia 342 pp. Tiberi, C., Diament, M., De´verch ere, J., Mikhailov, V., Tikhotsky, S., Achauer, U., 2003. Deep structure of the Baikal rift zone revealed by joint inversion of gravity and seismology. Journal of Geophysical Research 108 (B3), 2133 15pp. Tondi, R., Achauer, U., Landes, M., Ravi, R., Besutiu, L., 2009. Unveiling seismic and density structure beneath the Vrancea seismogenic zone, Romania. Journal of Geophysical Research 114 (B11307)http://dx.doi.org/10.1029/2008JB005992. Tondi, R., de Franco, R., 2006. Accurate assessment of 3D crustal velocity and density parameters: application to Vesuvius data sets. Physics of the Earth and Planetary Interiors 159, 183–201. Tondi, R., de Franco, R., Barzaghi, R., 2000. Sequential integrated inversion of refraction and wide-angle reflection traveltimes and gravity data for twodimensional velocity structures. Geophysical Journal International 141, 679–698. Tondi, R., Schivardi, R., Molinari, I., Morelli, A. Upper mantle structure below the European continent: constraints from surface wave tomography and GRACE satellite gravity data. Journal of Geophysical Research, http://dx.doi.org/10. 1029/2012JB009149, in press.en
dc.description.obiettivoSpecifico2.1. TTC - Laboratorio per le reti informatiche, GRID e calcolo avanzatoen
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0098-3004en
dc.relation.eissn1873-7803en
dc.contributor.authorTondi, R.en
dc.contributor.authorCavazzoni, C.en
dc.contributor.authorDanecek, P.en
dc.contributor.authorMorelli, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentCINECA, Interuniversity Computing Centre, Via Magnanelli 6/3, 40033 Casalecchio di Reno (BO), Italyen
dc.contributor.departmentUniv Granada, Inst Andaluz Geofis, E-18071 Granada, Spainen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptCINECA, Interuniversity Computing Centre, Casalecchio di Reno (BO), Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.orcid0000-0001-9400-3904-
crisitem.author.orcid0000-0002-2522-4567-
crisitem.author.orcid0000-0002-7400-8676-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
CAGEO.pdfMain article3.25 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

10
checked on Feb 10, 2021

Page view(s) 5

740
checked on Mar 27, 2024

Download(s) 50

104
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric