Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8022
DC FieldValueLanguage
dc.contributor.authorallDi Biagio, C.; ENEA, Laboratory for Earth Observations and Analyses, Via Anguillarese 301, 00123 Rome, Italyen
dc.contributor.authorallDi Sarra, A.; ENEA, Laboratory for Earth Observations and Analyses, Via Anguillarese 301, 00123 Rome, Italyen
dc.contributor.authorallEriksen, P.; DMI, Danish Meteorological Institute, Danish Climate Centre, Lyngbyvej 100, 2100 Copenhagen, Denmarken
dc.contributor.authorallAscanius, S. E.; DMI, Danish Meteorological Institute, Qaanaaq, Greenlanden
dc.contributor.authorallMuscari, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallHolben, B.; NASA Goddard Space Flight Center, Greenbelt, MD 20771, USAen
dc.date.accessioned2012-08-14T11:27:26Zen
dc.date.available2012-08-14T11:27:26Zen
dc.date.issued2012en
dc.identifier.urihttp://hdl.handle.net/2122/8022en
dc.description.abstractThis study is based on ground-based measurements of downward surface shortwave irradiance (SW), columnar water vapour (wv), and aerosol optical depth (s) obtained at Thule Air Base (Greenland) in 2007–2010, together with MODIS observations of the surface shortwave albedo (A). Radiative transfer model calculations are used in combination with measurements to separate the radiative effect of A (∆SWA), wv (DSWwv), and aerosols (∆SWs) in modulating SW in cloud-free conditions. The shortwave radiation at the surface is mainly affected by water vapour absorption, which produces a reduction of SW as low as -100 Wm-2 (-18%). The seasonal change of A produces an increase of SW by up to +25 Wm-2 (+4.5%). The annual mean radiative effect is estimated to be -(21–22) Wm-2 for wv, and +(2–3) Wm-2 for A. An increase by +0.065 cm in the annual mean wv, to which corresponds an absolute increase in ∆SWwv by 0.93 Wm-2 (4.3%), has been observed to occur between 2007 and 2010. In the same period, the annual mean A has decreased by -0.027, with a corresponding decrease in ∆SWA by 0.41 Wm-2 (-14.9%). Atmospheric aerosols produce a reduction of SW as low as -32 Wm-2 (-6.7%). The instantaneous aerosol radiative forcing (RFs) reaches values of -28 Wm-2 and shows a strong dependency on surface albedo. The derived radiative forcing efficiency (FEs) for solar zenith angles between 55 and 70 is estimated to be (-120.6 ± 4.3) for 0.1<A<0.2, and (-41.2 ± 1.6) Wm-2 for 0.5<A<0.6.en
dc.language.isoEnglishen
dc.publisher.nameSpringer Verlag GMBH Germanyen
dc.relation.ispartofClimate dynamicsen
dc.relation.ispartofseries3-4 / 39 (2012)en
dc.subjectArctic radiative balanceen
dc.subjectSurface albedoen
dc.subjectAtmospheric aerosolsen
dc.subjectWater vapouren
dc.subjectDirect radiative forcingen
dc.subjectArctic amplificationen
dc.titleEffect of surface albedo, water vapour, and atmospheric aerosols on the cloud-free shortwave radiative budget in the Arcticen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber953-969en
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.02. Climateen
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.05. Radiationen
dc.identifier.doi10.1007/s00382-011-1280-1en
dc.relation.referencesACIA (2005) Impacts of a warming Arctic: Arctic climate impact assessment. Cambridge University Press, Cambridge Berk A, Anderson GP, Acharya PK, Hoke ML, Chetwind JH, Bernstein LS et al (1998) MODTRAN4 Version 3 Revision 1 User’s Manual, Technical Report. Air Force Research Laboratory, Hanscom Air Force Base, MA, USA Bonasoni P et al (2010) Atmospheric brown clouds in the Himalayas: first two years of continuous observations at the Nepal Climate Observatory-Pyramid (5079 m). Atmos Chem Phys 10: 7515–7531 Brock CA et al (2010) Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic climate (ARCPAC) project. Atmos Chem Phys Discuss 10:27361–27434 Conant WC (2000) An observational approach for determining aerosol surface radiative forcing: results from the first field phase of INDOEX. J Geophys Res 105:15347–15360 Curry JA, Schramm JL, Ebert EE (1995a) Sea ice-albedo climate feedback mechanism. J Clim 8:240–247 Curry JA, Schramm JL, Serreze MC, Ebert EE (1995b) Water vapor feedback over the Arctic Ocean. J Geophys Res 100:223–229 de Villiers RA, Ancellet G, Pelon J, Quennehen B, Schwarzenboeck A, Gayet JF, Law KS (2010) Airborne measurements of aerosol optical properties related to early spring transport of mid-latitude sources into the Arctic. Atmos Chem Phys 10:5011–5030 Dong X, Xi B, Crosby K, Long CN, Stone R (2010) A 10-yr climatology of arctic cloud properties and surface radiation budget derived from ground-based observations at ARM NSA site and NOAA barrow observatory. J Geophys Res D12124. doi: 10.1029/2009JD013489 Dubovik O, King MD (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J Geophys Res 105:20673–20696 Eck TF et al (2009) Optical properties of boreal region biomass burning aerosols in central Alaska and seasonal variation of aerosol optical depth at an Arctic coastal site. J Geophys Res 114:D11201. doi:10.1029/2008JD010870 Engvall AC, Stro¨m J, Tunved P, Krejci R, Schlager H, Minikin A (2009) The radiative effect of an aged, internally mixed Arctic aerosol originating from lower-latitude biomass burning. Tellus B 61:677–684 Generoso S, Bey I, Attie´ JL, Bre´on FM (2007) A satellite- and modelbased assessment of the 2003 Russian fires: impact on the Arctic region. J Geophys Res 112:D15302. doi:10.1029/2006JD008344 Grenfell TC, Perovich DK (2008) Incident spectral irradiance in the Arctic Basin during the summer and fall. J Geophys Res 113:D12117. doi:10.1029/2007JD009418 Hatzianastassiou N, Matsoukas C, Fotiadi A, Pavlakis KG, Drakakis E, Hatzidimitriou D, Vardavas I (2005) Global distribution of Earth’s surface shortwave radiation budget. Atmos Chem Phys 5:2847–2867 Holben BN, Eck TF, Slutsker I, Tanre D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman Y, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET: a federated instrument network and data archive for aerosol characterization. Rem Sens Environ 66:1–16 Inoue J, Kikuchi T, Perovich TK, Morison JH (2005) A drop in midsummer shortwave radiation induced by changes in the icesurface condition in the central Arctic. Geophys Res Lett 32:L13603. doi:10.1029/2005GL023170 Intrieri J, Shupe M, Uttal T, McCarty B (2002) An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J Geophys Res 107. doi:10.1029/2000JC000423 IPCC (2007) Intergovernmental panel on climate change, fourth assessment report—the physical science basis. Cambridge University Press, Cambridge Iziomon MG, Lohmann U, Quinn PK (2006) Summertime pollution events in the Arctic and potential implications. J Geophys Res 111:D12206. doi:10.1029/2005JD006223 Jakobson E, Vihma T (2010) Atmospheric moisture budget in the Arctic based on the ERA-40 reanalysis. Int J Clim 30:2175–2194 Kurita N (2011) Origin of Arctic water vapor during the ice-growth season. Geophys Res Lett 38:L02709. doi:10.1029/2010GL 046064 Law KS, Stohl A (2007) Arctic air pollution: origins and impacts. Science 315:1537–1540 Lindsay RW, Zhang J (2005) The thinning of arctic sea ice, 1988–2003: have we passed a tipping point? J Climate 18:4879–4894 Lindsay RW, Zhang J, Schweiger AJ, Steele MA (2008) Seasonal predictions of ice extent in the Arctic Ocean. J Geophys Res 113:C02023. doi:10.1029/2007JC004259 Liu J, Schaaf C, Strahler A, Jiao Z, Shuai Y, Zhang Q, Roman M, Augustine JA, Dutton EG (2009) Validation of moderate resolution imaging spectroradiometer (MODIS) albedo retrieval algorithm: dependence of albedo on solar zenith angle. J Geophys Res 114. doi:10.1029/2008JD009969 Long CN, Ackerman TP (2000) Identification of clear skies from broadband pyranometer measurements and calculation of downwelling, shortwave cloud effects. J Geophys Res 105:609–626 Markus T, Stroeve JC, Miller J (2009) Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J Geophys Res 114:C12024. doi:10.1029/2009JC005436 McGuire AD, Chapin FS III, Walsh JE, Wirth C (2006) Integrated regional changes in Arctic climate feedbacks: implications for the global climate system. Annu Rev Environ Resour 31:61–91 Meloni D, di Sarra A, Biavati G, DeLuisi JJ, Monteleone F, Pace G, Piacentino S, Sferlazzo D (2007) Seasonal behavior of Saharan dust events at the Mediterranean island of Lampedusa in the period 1999–2005. Atmos Environ 41:3041–3056 Perovich D, Meier W, Maslanik J, Richter-Menge J (2010) Sea ice cover. In: Arctic Report Card 2010. http://www.arctic.noaa.gov/ reportcard Porter DF, Cassano JJ, Serreze MC, Kindig DN (2010) New estimates of the large-scale Arctic atmospheric energy budget. J Geophys Res 115. doi:10.1029/2009JD012653 Quinn PK, Shaw G, Andrews E, Dutton EG, Ruoho-Airola T, Gong SL (2007) Arctic haze: current trends and knowledge gaps. Tellus 59B:99–114 Rinke A, Melsheimer C, Dethloff K, Heygster G (2009) Arctic total water vapor: comparison of regional climate simulations with observations, and simulated decadal trends. J Hydrometeor 10:113–129 SchaafCBet al (2002) First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens Environ 83:135–148 Sedlar et al (2010) A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing. Clim Dyn. doi:10.1007/s00382-010-0937-5 Serreze MC, Francis JA (2006) The Arctic amplification debate. Clim Change 76:241–264 Serreze MC, Barry RG, Walsh JE (1995) Atmospheric water vapor characteristics at 70 degrees north. J Clim 8(4):719–731 Shine KP (1984) Shortwave flux over high albedo surfaces. Q J R Meteorol Soc 110:747–764 Shupe MD, Intrieri JM (2004) Cloud radiative forcing of the Arctic surface: the influence of cloud properties, surface albedo, and solar zenith angle. J Clim 17:616–629 Shupe MD, Walden VP, Eloranta E, Uttal T, Campbell JR, Starkweather SM, Shiobara M (2011) Clouds at Arctic atmospheric observatories. Part I: occurrence and macrophysical properties. J Appl Meteor Climatol 50:626–644 Smirnov A, Holben BN, Eck TF, Dubovik O, Slutsker I (2000) Cloud screening and 495 quality control algorithms for the AERONET data base. Remote Sens Environ 73:337–349 Stamnes K, Tsay SC, Wiscombe W, Jayaweera K (1988) Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl Opt 27:2502–2509 Stone RS, Anderson GP, Shettle EP, Andrews E, Loukachine K, Dutton EG, Schaaf C, Roman III MO (2008) Radiative impact of boreal smoke in the Arctic: observed and modelled. J Geophys Res 113: D14S16. doi:10.1029/2007JD009657 Stone RS et al (2010) A three dimensional characterization of Arctic aerosols from airborne Sun photometer observations: PAMARCMIP, April 2009. J Geophys Res 115:D13203. doi: 10.1029/2009JD013605 Stroeve J, Box JE, Gao F, Liang S, Nolin A, Schaaf C (2005) Accuracy assessment of the MODIS 16-day albedo product for snow: comparisons with Greenland in situ measurements. Remote Sens Environ 94:46–60 Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:L09501. doi:10.1029/2007GL029703 Stroeve JC, Maslanik J, Serreze MC, Rigor I, Meier W, Fowler C (2011) Sea ice response to an extreme negative phase of the Arctic Oscillation during winter 2009/2010. Geophys Res Lett 38:L02502. doi:10.1029/2010GL045662 Tomasi C et al (2007) Aerosols in polar regions: a historical overview based on optical depth and in situ observations. J Geophys Res 112:D16205. doi:10.1029/2007JD008432 Treffeisen R, Rinke A, Fortmann M, Dethloff K, Herber A, Yamanouchi T (2005) A case study of the radiative effects of Arctic aerosols in March 2000. Atmos Environ 39:899–911 Trenberth KE, Fasullo J, Smith L (2005) Trends and variability in column-integrated atmospheric water vapour. Clim Dyn 24:741–758 Wang XJ, Key JR (2003) Recent trends in Arctic surface, cloud, and radiation properties from space. Science 299:1725–1728 Warneke C et al (2009) Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008. Geophys Res Lett 36:L02813. doi:10.1029/2008GL036194 Warneke C et al (2010) An important contribution to springtime Arctic aerosol from biomass burning in Russia. Geophys Res Lett 37:L01801. doi:10.1029/2009GL041816 Wendler G, Moore B, Hartmann B, Stuefer M, Flint R (2004) Effects of multiple reflection and albedo on the net radiation in the pack ice zones of Antarctica. J Geophys Res 109:D06113. doi:10.1029/ 2003JD003927 Wyser K et al (2008) An evaluation of Arctic cloud and radiation processes during the SHEBA year: simulation results from eight Arctic regional climate models. Clim Dyn 30:203–223 Zuidema P, Joyce R (2008) Water vapor, cloud liquid water paths, and rain rates over northern high latitude open seas. J Geophys Res 113:D05205. doi:10.1029/2007JD009040en
dc.description.obiettivoSpecifico1.10. TTC - Telerilevamentoen
dc.description.obiettivoSpecifico3.7. Dinamica del clima e dell'oceanoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0930-7575en
dc.relation.eissn1432-0894en
dc.contributor.authorDi Biagio, C.en
dc.contributor.authorDi Sarra, A.en
dc.contributor.authorEriksen, P.en
dc.contributor.authorAscanius, S. E.en
dc.contributor.authorMuscari, G.en
dc.contributor.authorHolben, B.en
dc.contributor.departmentENEA, Laboratory for Earth Observations and Analyses, Via Anguillarese 301, 00123 Rome, Italyen
dc.contributor.departmentENEA, Laboratory for Earth Observations and Analyses, Via Anguillarese 301, 00123 Rome, Italyen
dc.contributor.departmentDMI, Danish Meteorological Institute, Danish Climate Centre, Lyngbyvej 100, 2100 Copenhagen, Denmarken
dc.contributor.departmentDMI, Danish Meteorological Institute, Qaanaaq, Greenlanden
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentNASA Goddard Space Flight Center, Greenbelt, MD 20771, USAen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptENEA/UTMEA-TER, S. Maria di Galeria, Italy-
crisitem.author.deptDanish Meteorological Institute, Copenhagen, Denmark-
crisitem.author.deptDanish Meteorological Institute, Qanaaq, Greenland-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptNASA Goddard Space Flight Center, Greenbelt, MD 20771, USA-
crisitem.author.orcid0000-0002-2405-2898-
crisitem.author.orcid0000-0001-6326-2612-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2012Clim_Dyn_DiBiagio.pdf4.24 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

12
checked on Feb 10, 2021

Page view(s) 10

464
checked on Apr 17, 2024

Download(s) 50

66
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric