Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/8009
DC FieldValueLanguage
dc.contributor.authorallDi Chiara, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallSperanza, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallPorreca, M.; Centro de Vulcanologia e Avaliação de Riscos Geológicos, Universidade dos Açores, Ponta Delgada, Portugal.en
dc.date.accessioned2012-07-30T10:04:59Zen
dc.date.available2012-07-30T10:04:59Zen
dc.date.issued2012-07-12en
dc.identifier.urihttp://hdl.handle.net/2122/8009en
dc.description.abstractWe report on 33 new paleomagnetic directions obtained from 16 lava flows emplaced in the last 3 ka on São Miguel, the largest island of the Azores. The data provide 27 well-dated directions from historical or 14C dated flows which, together with 6 directions previously gathered from the same flows by Johnson et al. (1998), yield the first paleomagnetic directional record of the last 3 ka from the Atlantic Ocean. Within-flow directions are consistent, suggesting that inclination swings from 60 to 25 and declination changes between 10 to 20 reflect variations in the geomagnetic field over the last 3 ka. To a first approximation, the declination record is consistent with predictions from CALS3k.4 and gufm1 global field models. Conversely, inclination values are lower than model predictions at two different ages: 1) four sites from the 1652 AD flow yield I = 48 instead of I = 63 predicted by gufm1; 2) data from several flows nicely mimic the inclination minimum of 800–1400 AD, but inclination values are lower by 10 than CALS3k.4 model predictions. By interpolating a cubic spline fit on declination / inclination versus age data, we tentatively infer the directional evolution of the geomagnetic field at the Azores from 1000 BC to 1600 AD. The obtained curve shows three tracks in virtual overlap during the 1000–800 BC, 800–500 BC, and 400–700 AD time spans.en
dc.language.isoEnglishen
dc.relation.ispartofJournal of geophysical researchen
dc.relation.ispartofseries/117 (2012)en
dc.subjectPaleomagnetismen
dc.subjectGeomagnetic fielden
dc.subjectSecular variationen
dc.subjectAzoresen
dc.subjectSão Miguelen
dc.subjectHoloceneen
dc.titlePaleomagnetic secular variation at the Azores during the last 3 kaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB07101en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversalsen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.03. Global and regional modelsen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.03. Volcanic eruptionsen
dc.subject.INGV05. General::05.08. Risk::05.08.99. General or miscellaneousen
dc.identifier.doi10.1029/2012JB009285en
dc.relation.referencesAbdel-Monem, A. A., L. A. Fernandez, and G. M. Boone (1975), K–Ar ages from the eastern Azores group (Santa Maria, São Miguel and the Formigas Islands), Lithos, 8(4), 247–254, doi:10.1016/0024-4937(75) 90008-0. Baag, C., C. E. Helsley, S. Xu, and B. R. Lienert (1995), Deflection of paleomagnetic directions due to magnetization of the underlying terrain, J. Geophys. Res., 100(B6), 10,013–10,027. Blake, S. (1981), Eruptions from zoned magma chambers, J. Geol. Soc., 138(3), 281–287, doi:10.1144/gsjgs.138.3.0281. Blanco, I., A. Garcìa, and J. M. Torta (1997), Magnetic study of the Furna caldera (Azores), Ann. Geofis., 15(2), 341–359. Bleil, U., and M. Dillon (2008), Holocene Earth’s magnetic field variations recorded in marine sediments of the NW African continental margin, Stud. Geophys. Geod., 52(2), 133–155, doi:10.1007/s11200-008-0010-6. Booth, B., R. Croasdale, and G. P. L. Walker (1978), A quantitative study of five thousand years of volcanism on São Miguel, Azores, Philos. Trans. R. Soc. London, A, 288, 271–319, doi:10.1098/rsta.1978.0018. Bucur, I. (1994), The direction of the terrestrial magnetic field in France during the last 21 centuries. Recent progress, Phys. Earth Planet. Inter., 87, 95–109, doi:10.1016/0031-9201(94)90024-8. Carlut, J., X. Quidelleur, V. Courtillot, and G. Boudon (2000), Paleomagnetic directions and K/Ar dating of 0 to 1 Ma lava flows from La Guadeloupe Island (French West Indies): Implications for time-averaged field models, J. Geophys. Res., 105, 835–849, doi:10.1029/1999JB900238. Castro, J., and L. Brown (1987), Shallow paleomagnetic direction from historic lava flows, Hawaii, Geophys. Res. Lett., 14(12), 1203–1206, doi:10.1029/GL014i012p01203. Channell, J. E. T., D. A. Hodell, and B. Lehman (1997), Relative geomagnetic paleointensity and d18O ad ODP Site 983(Gardar Drift, North Atlantic) since 350 ka, Earth Planet. Sci. Lett., 153, 103–118, doi:10.1016/S0012-821X(97)00164-7. Day, R., M. Fuller, and V. A. Schmidt (1977), Hysteresis properties of titanomagnetites: Grain size and compositional dependence, Phys. Earth Planet. Inter., 13, 260–267, doi:10.1016/0031-9201(77)90108-X. Doell, R. R., and A. Cox (1963), The accuracy of the paleomagnetic method as evaluated from historic Hawaiian lava flows, J. Geophys. Res., 68, 1997–2009, doi:10.1029/JZ068i007p01997. Donadini, F., M. Korte, and C. G. Constable (2009), Geomagnetic field for 0–3 ka: 1. New data sets for global modeling, Geochem. Geophys. Geosyst., 10, Q06007, doi:10.1029/2008GC002295. Dunlop, D. J. (2002), Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc): 1. Theoretical curves and tests using titanomagnetite data, J. Geophys. Res., 107(B3), 2056, doi:10.1029/2001JB000486. Feraud, G., I. Kaneoka, and C. J. Allègre (1980), K/Ar ages and stress pattern in the Azores: Geodynamic implications, Earth Planet. Sci. Lett., 46, 275–286, doi:10.1016/0012-821X(80)90013-8. Fernandez, L. A. (1980), Geology and petrology of the Nordeste volcanic complex. São Miguel, Azores, Geol. Soc. Am. Bull., 91, 675–680, doi:10.1130/0016-7606(1980)91<675:GAPOTN>2.0.CO;2. Ferreira, T. (2000), Caracterização da actividade vulcânica da ilha de S. Miguel (Açores): Vulcanismo basáltico recente e zonas de desgaseificação. Avaliação de riscos, PhD thesis, 248 pp., Dep. de Geoci., Univ. dos Açores, Ponta Delgada, Portugal. Fisher, R. A. (1953), Dispersion on a sphere, Proc. R. Soc. London, A, 217, 295–305, doi:10.1098/rspa.1953.0064. Gallet, Y., A. Genevey, and M. Le Goff (2002), Three millennia of directional variation of the Earth’s magnetic field in western Europe as revealed by archaeological artefacts, Phys. Earth Planet. Inter., 131, 81–89, doi:10.1016/S0031-9201(02)00030-4. Genevey, A., Y. Gallet, C. G. Constable, M. Korte, and G. Hulot (2008), ArcheoInt: An upgraded compilation of geomagnetic field intensity data for the past ten millennia and its application to the recovery of the past dipole moment, Geochem. Geophys. Geosyst., 9, Q04038, doi:10.1029/ 2007GC001881. Hagstrum, J. T., and D. E. Champion (1994), Paleomagnetic correlation of Late Quaternary lava flows in the lowest east rift zone of Kilauea Volcano, Hawaii, J. Geophys. Res., 99(B11), 21,679–21,690, doi:10.1029/ 94JB01852. Jackson, A., A. R. T. Jonkers, and M. R. Walker (2000), Four centuries of geomagnetic secular variation from historical records, Philos. Trans. R. Soc. London, A, 358, 957–990, doi:10.1098/rsta.2000.0569. Johnson, C. L., J. R. Wijbrans, C. G. Constable, J. Gee, H. Staudigel, L. Tauxe, V. H. Forjaz, and M. Salgueiro (1998), 40Ar/39Ar ages and paleomagnetism of São Miguel lavas, Azores, Earth Planet. Sci. Lett., 160, 637–649, doi:10.1016/S0012-821X(98)00117-4. Jurado-Chichay, Z., J. Urrutia-Fucugauchi, and S. K. Rowland (1996), A paleomagnetic study of the Pohue Bay flow and its associated coastal cones, Mauna Loa volcano, Hawaii: Constraints on their origin and temporal relationships, Phys. Earth Planet. Inter., 97(1–4), 269–277, doi:10.1016/0031-9201(95)03135-9. Kirschvink, J. L. (1980), The least-squares line and plane and the analysis of palaeomagnetic data, Geophys. J. R. Astron. Soc., 62(3), 699–718, doi:10.1111/j.1365-246X.1980.tb02601.x. Korte, M., and C. G. Constable (2005), Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K, Geochem. Geophys. Geosyst., 6, Q02H16, doi:10.1029/2004GC000801. Korte, M., and C. G. Constable (2011), Improving geomagnetic field reconstruction for 0–3 ka, Phys. Earth Planet. Inter., 188, 247–259, doi:10.1016/j.pepi.2011.06.017. Korte, M., and R. Holme (2010), On the persistence of geomagnetic flux lobes in global Holocene field models, Phys. Earth Planet. Inter., 182(3–4), 179–186, doi:10.1016/j.pepi.2010.08.006. Korte, M., C. G. Constable, and F. Donadini (2011), Reconstructing the Holocene geomagnetic field, Earth Planet. Sci. Lett., 312(3–4), 497–505, doi:10.1016/j.epsl.2011.10.031. Lanza, R., and E. Zanella (2003), Paleomagnetic secular variation at Vulcano (Aeolian Islands) during the last 135 kyr, Earth Planet. Sci. Lett., 213, 321–336, doi:10.1016/S0012-821X(03)00326-1. Lanza, R., and E. Zanella (2006), Comments on “Chronology of Vesuvius’ activity from A. D. 79 to 1631 based on archeomagnetism of lavas and historical sources” by C. Principe et al., Bull. Volcanol., 68, 394–396. Lanza, R., A. Meloni, and E. Tema (2005), Historical measurement of the Earth’s magnetic field compared with the remanence directions from lava flows in Italy over the last four centuries, Phys. Earth Planet. Inter., 148, 97–107, doi:10.1016/j.pepi.2004.08.005. Lund, S. P., and L. Kleigwin (1994), Measurement of the degree of smoothing in sediment paleomagnetic secular variation records: An example from late Quaternary deep-sea sediments of the Bermuda Rise, western North Atlantic Ocean, Earth Planet. Sci. Lett., 122, 317–330, doi:10.1016/0012-821X(94)90005-1. McKee, E. H., and R. B. Moore (1992), Potassium–argon dates for trachytic rocks on São Miguel, Azores, Isochron West, 58, 9–11. Michalk, D. M., A. R. Muxworthy, H. N. Bohnel, J. MacLennan, and N. Nowczyk (2008), Evaluation of the multispecimen parallel differetial pTRM method: A test on historical lavas from Iceland and Mexico, Geophys. J. Int., 173, 409–420, doi:10.1111/j.1365-246X.2008.03740.x. Mitchell-Thomè, R. C. (1981), Vulcanicity of historic times in the Middle Atlantic Islands, Bull. Volcanol., 44, 57–69. Moore, R. B. (1990), Volcanic geology and eruption frequency, São Miguel, Azores, Bull. Volcanol., 52, 602–614, doi:10.1007/BF00301211. Moore, R. B. (1991), Geologic map of São Miguel, Azores, U.S. Geol. Surv. Misc. Invest. Map, I-2007, scale 1:50,000. Moore, R. B., and M. Rubin (1991), Radiocarbon dates for lava flows and pyroclastic deposits on São Miguel, Azores, Radiocarbon, 33(1), 151–164. Noel, M., and C. M. Batt (1990), A method for correcting geographically separated remanence directions for the purpose or archaeomagnetic dating, Geophys. J. Int., 102, 753–756, doi:10.1111/j.1365-246X.1990. tb04594.x. Pressling, N., F. A. Trusdell, and D. Gubbins (2009), New and revised 14C dates for Hawaiian surface lava flows: Paleomagnetic and geomagnetic implications, Geophys. Res. Lett., 36, L11306, doi:10.1029/ 2009GL037792. Queiroz, G. (1997), Vulcão das Sete Cidades (S.Miguel, Açores), História Eruptiva e Avaliação do Hazard, PhD thesis, Univ. dos Açores, Ponta Delgada, Portugal. Queiroz, G., J. M. Pacheco, J. L. Gaspar, W. P. Aspinall, J. E. Guest, and T. Ferreira (2008), The last 5000 years of activity at Sete Cidades volcano (São Miguel Island, Azores): Implications for hazard assessment, J. Volcanol. Geotherm. Res., 178, 562–573. Riisager, J., P. Riisager, and A. K. Pedersen (2003), Paleomagnetism of large igneous provinces: Case-study from West Greenland, North Atlantic igneous province, Earth Planet. Sci. Lett., 214, 409–425, doi:10.1016/S0012-821X(03)00367-4. Rolph, T., J. Shaw, and J. E. Guest (1987), Geomagnetic field variations as a dating tool: Application to Sicilian lavas, J. Archaeol. Sci., 14, 215–225, doi:10.1016/0305-4403(87)90008-2. Rutten, M. G., and H. Wensink (1960), Paleomagnetic dating, glaciations and the chronology of the Plio-Pleistocene in Iceland, paper presented at XXI International Geology Congress, Copenhagen. Schweitzer, C., and H. C. Soffel (1980), Paleointensity measurements on post-glacial lavas from Iceland, J. Geophys., 47, 57–60. Shotton, F. W., and R. Williams (1971), Birmingham University radiocarbon dates II, Radiocarbon, 10(2), 200–206. Soler, V., J. C. Carracedo, and F. Heller (1984), Geomagnetic secular variation in historical lavas from the Canary Islands, Geophys. J. R. Astron. Soc., 78, 313–318, doi:10.1111/j.1365-246X.1984.tb06487.x. Speranza, F., M. Pompilio, and L. Sagnotti (2004), Paleomagnetism of spatter lava from Stromboli volcano (Aeolian Islands, Italy): Implications for the age of paroxysmal eruption, Geophys. Res. Lett., 31, L02607, doi:10.1029/2003GL018944. Speranza, F., S. Branca, M. Coltelli, F. D’Ajello Caracciolo, and L. Vigliotti (2006), How accurate is “paleomagnetic dating”? New evidence from historical lavas from Mount Etna, J. Geophys. Res., 111, B12S33, doi:10.1029/2006JB004496.Speranza, F., M. Pompilio, F. D’Ajello Caracciolo, and L. Sagnotti (2008), Holocene eruptive history of the Stromboli volcano: Constraints from paleomagnetic dating, J. Geophys. Res., 113, B09101, doi:10.1029/ 2007JB005139. Speranza, F., P. Landi, F. D’Ajello Caracciolo, and A. Pignatelli (2010), Paleomagnetic dating of the most recent silicic eruptive activity at Pantelleria (Strait of Sicily), Bull. Volcanol., 72, 847–858, doi:10.1007/ s00445-010-0368-5. Speranza, F., A. Di Chiara, and S. G. Rotolo (2012), Correlation of welded ignimbrites on Pantelleria (Strait of Sicily) using paleomagnetism, Bull. Volcanol., 74(2), 341–357, doi:10.1007/s00445-011-0521-9. Stanton, T., P. Riisager, M. F. Knudsen, and T. Thoardrson (2011), New paleointensity data from Holocene Icelandic lavas, Phys. Earth Planet. Inter., 186(1–2), 1–10, doi:10.1016/j.pepi.2011.01.006. Stoner, J. S., J. E. T. Channell, C. Hillaire-Marcel, and C. Kissel (2000), Geomagnetic paleointensity and environmental record from Labrador Sea core MD95-2024: Global marine sediment and ice core chronostratigraphy for the last 110 kyr, Earth Planet. Sci. Lett., 183, 161–177. Stoner, J. S., A. Jennings, G. B. Kristjánsdóttir, G. Dunhill, J. T. Andrews, and J. Hardardottir (2007), A paleomagnetic approach toward refining Holocene radiocarbon-based chronologies: Paleoceanographic records from the north Iceland (MD99–2269) and the east Greenland (MD99–2322) margins, Paleoceanography, 22, PA1209, doi:10.1029/ 2006PA001285. Tanguy, J. C., M. Le Goff, C. Principe, S. Arrighi, V. Chillemi, A. Paiotti, S. La Delfa, and G. Patanè (2003), Archeomagnetic dating of Mediterranean volcanics of the last 2100 years: Validity and limits, Earth Planet. Sci. Lett., 211, 111–124, doi:10.1016/S0012-821X(03)00186-9. Thompson, R., and G. M. Turner (1985), Icelandic Holocene paleomagnetism, Phys. Earth Planet. Inter., 38, 250–261, doi:10.1016/0031-9201 (85)90072-X. Urrutia-Fucuguachi, J., L. M. Alva-Valdivia, A. Goguitchaichvili, M. L. Rivas, and J. Morales (2004), Paleomagnetic, rock-magnetic and microscopy studies of historic lava flows from the Paricutin volcano, Mexico: Implication for the deflection of paleomagnetic directions, Geophys. J. Int., 156, 431–442, doi:10.1111/j.1365- 246X.2004.02166.x. Valet, J. P., and V. Soler (1999), Magnetic anomalies of lava fields in the Canary Islands. Possible consequences for paleomagnetic records, Phys. Earth Planet. Inter., 115(2), 109–118. Vezzoli, L., C. Principe, J. Malfatti, S. Arrighi, J. C. Tanguy, and M. Le Goff (2009), Modes and times of caldera resurgence: The <10 ka evolution of Ischia Caldera, Italy, from high-precision archaeomagnetic dating, J. Volcanol. Geotherm. Res., 186, 305–319, doi:10.1016/j. jvolgeores.2009.07.008. Wallenstein, N., A. M. Duncan, D. Chester, and R. Marques (2007), Fogo Volcano (São Miguel, Azores): A hazardous edifice, Géomorphol. Relief Processus Environ., 3, 259–270. Zanella, E. (1998), Paleomagnetism of Pleistocene volcanic rocks from Pantelleria Island (Sicily Channel), Italy, Phys. Earth Planet. Inter., 108, 291–303, doi:10.1016/S0031-9201(98)00108-3. Zijderveld, J. D. A. (1967), AC demagnetization of rocks: Analysis of results, in Methods in Palaeomagnetism, edited by S. K. Runcorn, K. M. Creer, and D. W. Collinson, pp. 254–286, Elsevier, Amsterdam.en
dc.description.obiettivoSpecifico1.6. Osservazioni di geomagnetismoen
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.obiettivoSpecifico3.4. Geomagnetismoen
dc.description.obiettivoSpecifico3.5. Geologia e storia dei vulcani ed evoluzione dei magmien
dc.description.obiettivoSpecifico5.4. Banche dati di geomagnetismo, aeronomia, clima e ambienteen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorDi Chiara, A.en
dc.contributor.authorSperanza, F.en
dc.contributor.authorPorreca, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentCentro de Vulcanologia e Avaliação de Riscos Geológicos, Universidade dos Açores, Ponta Delgada, Portugal.en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0002-9106-9796-
crisitem.author.orcid0000-0001-5492-8670-
crisitem.author.orcid0000-0001-8628-606X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
DiChiaraetal_JGR-2012.pdf2.04 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

17
checked on Feb 10, 2021

Page view(s) 10

447
checked on Apr 17, 2024

Download(s)

43
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric