Please use this identifier to cite or link to this item:
http://hdl.handle.net/2122/8007
DC Field | Value | Language |
---|---|---|
dc.contributor.authorall | Sagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia | en |
dc.contributor.authorall | Winkler, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia | en |
dc.date.accessioned | 2012-07-30T09:55:44Z | en |
dc.date.available | 2012-07-30T09:55:44Z | en |
dc.date.issued | 2012-11 | en |
dc.identifier.uri | http://hdl.handle.net/2122/8007 | en |
dc.description.abstract | The magnetic properties of traffic-related airborne particulate matter (PM) in the city of Rome, Italy, have been previously analyzed and interpreted as suitable proxies to discriminate between different vehicular sources. In this study, we carried out a new set of measurements and analyses specifically devoted to the identification and evaluation of the contribution of ultrafine superparamagnetic (SP) particles to the overall magnetic assemblage of traffic-related PM in Rome. In particular, the presence and the concentration of SP particles have been estimated on powders collected from disk brakes and gasoline exhaust pipes of circulating vehicles and from Quercus ilex leaves grown along high-traffic roads, measuring their hysteresis parameters in a range of temperatures from 293 K to 10 K and measuring the time decay of their saturation remanent magnetization (MRS) at room temperature. The SP fraction contributes for the 10-15% to the overall room temperature MRS and causes the observed changes in the hysteresis properties measured upon cooling down to 10 K. In all the analyzed samples the SP fraction is associated to a generally prevailing population of larger ferrimagnetic multidomain (MD) particles and we suppose that in traffic-related PM the SP fraction mainly occurs as coating of MD particles and originated by localized stress in the oxidized outer shell surrounding the unoxidized core of magnetite-like grains. Under this hypothesis, the estimate of SP content in traffic-related PM cannot be considered a robust proxy to estimate the overall concentration of nanometric particles. | en |
dc.language.iso | English | en |
dc.publisher.name | Elsevier Science Limited | en |
dc.relation.ispartof | Atmospheric environment | en |
dc.relation.ispartofseries | /59 (2012) | en |
dc.subject | Particulate Matter | en |
dc.subject | Air pollution | en |
dc.subject | Environmental magnetism | en |
dc.subject | Superparamagnetic particles | en |
dc.subject | Hysteresis properties | en |
dc.title | On the magnetic characterization and quantification of the superparamagnetic fraction of traffic-related urban airborne PM in Rome, Italy | en |
dc.type | article | en |
dc.description.status | Published | en |
dc.type.QualityControl | Peer-reviewed | en |
dc.description.pagenumber | 131-140 | en |
dc.subject.INGV | 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism | en |
dc.identifier.doi | 10.1016/j.atmosenv.2012.04.058 | en |
dc.relation.references | Curtis, L., Rea, W., Smith-Willis, P., Fenyves, E., Pan, Y., 2006. Adverse effects of outdoor air pollutants. Environ. Int. 32, 815e830. Day, R., Fuller, M., Schmidt, V.A., 1977. Hysteresis properties of titanomagnetites. Grain-size and compositional dependence. Phys. Earth Planet. Inter. 13, 260e267. doi:10.1016/0031-9201(77)90108-X. Dearing, J.A., Dann, R.J.L., Hay, K., Lees, J.A., Loveland, P.J., Maher, B.A., O’Grady, K., 1996. Frequency-dependent susceptibility measurements of environmental materials. Geophys. J. Int. 124, 228e240. doi:10.1111/j.1365- 246X.1996.tb06366.x. Dunlop, D.J., Özdemir, Ö., 1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge Univ. Press, New York, 573 pp. Dunlop, D.J., 2002. Theory and application of the “day plot” (MRS/MS versus Hcr/Hc): 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res. 107 (B3), 2056. doi:10.1029/2001JB000486. Gautam, P., Blaha, U., Appel, E., 2005. Magnetic susceptibility of dust-loaded leaves as a proxy of traffic-related heavy metal pollution in Kathmandu city, Nepal. Atmos. Environ. 39, 2201e2211. Georgeaud, V.M., Rochette, P., Ambrosi, J.P., Vandamme, D., Williamson, D., 1997. Relationship between heavy metals and magnetic properties in a large polluted catchments: the Etang de Berre (south France). Phys. Chem. Earth 22, 211e214. Gómez-Paccard, M., McIntosh, G., Villasante, V., Osete, M.L., Rodriguez-Fernández, J., Gómez-Sal, J.C., 2004. Low-temperature and high magnetic field measurements of atmospheric particulate matter. J. Magn. Magn. Mater. 272, 2420e2421. Harrison, R.J., Feinberg, J.M., 2008. FORCinel: an improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochem. Geophys. Geosyst. 9, Q05016. doi:10.1029/ 2008GC001987. Hanesch, M., Scholger, R., Rey, D., 2003. Mapping dust distribution around an industrial site by measuring magnetic parameters of tree leaves. Atmos. Environ. 37, 5125e5133. Hirt, A.M., Lanci, L., Dobson, J., Weidler, P., Gehring, A.U., 2002. Low-temperature magnetic properties of lepidocrocite. J. Geophys. Res. 107 (B1), 2011. doi:10.1029/2001JB000242. Hunt, A., Jones, J., Oldfield, F., 1984. Magnetic measurement and heavy metals in atmospheric particulates of anthropogenic origin. Sci. Total Environ. 33, 129e139. Kosterov, A., 2007. Magnetic properties, low-temperature. In: Gubbins, David, Herrero-Bervera, Emilio (Eds.), Encyclopedia of Geomagnetism and Paleomagnetism. Springer, 515e525, 1054 pp. Lu, S.G., Zheng, Y.W., Bai, S.Q., 2008. A HRTEM/EDX approach to identification of the source of dust particles on urban tree leaves. Atmos. Environ. 42, 6431e6441. Lu, S.G., Bai, S.Q., Xue, Q.F., 2007. Magnetic properties as indicators of heavy metals pollution in urban topsoils: a case study from the city of Luoyang, China. Geophys. J. Int. 171, 568e580. Maher, B.A., Moore, C., Matzka, J., 2008. Spatial variation in vehicle-derived metal pollution identified by magnetic and elemental analysis of roadside tree leaves. Atmos. Environ. 42, 364e373. McIntosh, G., Gómez-Paccard, M., Osete, M.L., 2007. The magnetic properties of particles deposited on Platanus x hispanica leaves in Madrid, Spain, and their temporal and spatial variations. Sci. Total Environ. 382, 135e146. Mitchell, R., Maher, B.A., 2009. Evaluation and application of biomagnetic monitoring of traffic-derived particulate pollution. Atmos. Environ. 43, 2095e2103. Moreno, E., Sagnotti, L., Winkler, A., Dinares-Turell, J., Cascella, A., 2003. Biomonitoring of traffic air pollution in Rome using magnetic properties of tree leaves. Atmos. Environ. 37, 2967e2977. doi:10.1016/S1352-2310(03) 00244-9. Morris, W.A., Versteeg, J.K., Bryant, D.W., Legzdins, A.E., McCarry, B.E., Marvin, H.X., 1995. Preliminary comparisons between mutagenic and magnetic susceptibility of respirable airborne particle. Atmos. Environ. 29, 3441e3450. Muxworthy, A.R., 1999. Low-temperature susceptibility and hysteresis of magnetite. Earth Planet. Sci. Lett. 169, 51e58. doi:10.1016/S0012-821X(99)00067-9. Muxworthy, A.R., Matzka, J., Davila, A.F., Petersen, N., 2003. Magnetic signature of daily sampled urban atmospheric particles. Atmos. Environ. 37, 4163e4169. Muxworthy, A., Heslop, D., Williams, W., 2004. Influence of magnetostatic interactions on first-order-reversal-curve (FORC) diagrams: a micromagnetic approach. Geophys. J. Int. 158, 888e897. doi:10.1111/j.1365-246X.2004.02358.x. Muxworthy, Roberts, 2007. First-order reversal curve (FORC) diagrams. In: Gubbins, David, Herrero-Bervera, Emilio (Eds.), Encyclopedia of Geomagnetism and Paleomagnetism. Springer, 266e272, 1054 pp. Özdemir, Ö., Dunlop, D.J., Moskowitz, B.M., 1993. The effect of oxidation on the Verwey transition in magnetite. Geophys. Res. Lett. 20, 1671e1674. doi:10.1029/ 93GL01483. Pike, C.R., Roberts, A.P., Verosub, K.L., 1999. Characterizing interactions in fine magnetic particle systems using first order reversal curves. J. Appl. Phys. 85, 6660e6667. doi:10.1063/1.370176. Pike, C.R., Roberts, A.P., Verosub, K.L., 2001. First-order reversal curve diagrams and thermal relaxation effects in magnetic particles. Geophys. J. Int. 145 (3), 721e730. Roberts, A.P., Pike, C.R., Verosub, K.L., 2000. First order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples. J. Geophys. Res. 105, 28,461e28,475. doi:10.1029/2000JB900326. Sagnotti, L., Macrì, P., Egli, R., Mondino, M., 2006. Magnetic properties of atmospheric particulate matter from automatic air sampler stations in Latium (Italy): toward a definition of magnetic fingerprints for natural and anthropogenic PM10 sources. J. Geophys. Res. 111. doi:10.1029/2006JB004508 Sagnotti, L., Taddeucci, J., Winkler,A., Cavallo,A., 2009. Compositional, morphological, and hysteresis characterization of magnetic airborne particulate matter in Rome, Italy. Geochem. Geophys. Geosyst. 10, Q08Z06. doi:10.1029/2009GC002563. Saragnese, F., Lanci, L., Lanza, R., 2011. Nanometric-sized atmospheric particulate studied by magnetic analyses. Atmos. Environ. 45 (2), 450e459. doi:10.1016/ j.atmosenv.2010.09.057. Silverman, R., Kazuhiko, I., Freese, J., Kaufman, B.J., De Claro, D., Braun, J., Prezant, D.J., 2010. Association of ambient fine particles with out-of-hospital cardiac arrests in New York city. Am. J. Epidemiol. 172 (8), 917e923. Spassov, S., Egli, R., Heller, F., Nourgaliev, D.K., Hannam, J., 2004. Magnetic quantification of urban pollution sources in atmospheric particulate matter. Geophys. J. Int. 159, 555e564. Szönyi, M., Sagnotti, L., Hirt, A.M., 2007. On leaf magnetic homogeneity in particulate matter biomonitoring studies. Geophys. Res. Lett. 34, L06306. doi:10.1029/ 2006GL029076. Szönyi, M., Sagnotti, L., Hirt, A.M., 2008. A refined biomonitoring study of airborne particulate matter pollution in Rome, with magnetic measurements on Quercus Ilex tree leaves. Geophys. J. Int. 173, 127e141. Wang, X., Løvlie, R., Zhao, X., Yang, Z., Jiang, F., Wang, S., 2010. Quantifying ultrafine pedogenic magnetic particles in Chinese loess by monitoring viscous decay of superparamagnetism. Geochem. Geophys. Geosyst. 11, Q10008. doi:10.1029/ 2010GC003194. WHO, 2006. Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. In: Global Update 2005. Summary of Risk Assessment. World Health Organization. http://www.who.int/phe/health_topics/ outdoorair_aqg/en/index.html. Winklhofer, M., Zimanyi, G.T., 2006. Extracting the intrinsic switching field distribution in perpendicular media: a comparative analysis. J. Appl. Phys. 99 (8). doi:10.1063/1.2176598. 08E710-1-3. Winklhofer, M., Dumas, R.K., Liu, K., 2008. Identifying reversible and irreversible magnetization changes in prototype patterned media using first- and secondorder reversal curves. J. Appl. Phys. 103 (7), 07C518. doi:10.1063/1.2837888. Worm, H.-U., Jackson, M., 1999. The superparamagnetism of Yucca Mountain Tuff. J. Geophys. Res. 104, 25415e25425. Worm, H.-U., 1998. On the superparamagnetic-stable single domain transition for magnetite, and frequency dependence of susceptibility. Geophys. J. Int. 133, 201e206. Zergenyi, R.S., Hirt, A.M., Zimmermann, S., Dobson, J.P., Lowrie, W., 2000. Lowtemperature magnetic behavior of ferrihydrite. J. Geophys. Res. 105 (B4), 8297e8303. doi:10.1029/1999JB900315. | en |
dc.description.obiettivoSpecifico | 2.2. Laboratorio di paleomagnetismo | en |
dc.description.obiettivoSpecifico | 3.8. Geofisica per l'ambiente | en |
dc.description.journalType | JCR Journal | en |
dc.description.fulltext | restricted | en |
dc.relation.issn | 1352-2310 | en |
dc.relation.eissn | 1873-2844 | en |
dc.contributor.author | Sagnotti, L. | en |
dc.contributor.author | Winkler, A. | en |
dc.contributor.department | Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia | en |
dc.contributor.department | Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia | en |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairetype | article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | restricted | - |
crisitem.department.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.department.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.author.dept | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia | - |
crisitem.author.dept | Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia | - |
crisitem.author.orcid | 0000-0003-3944-201X | - |
crisitem.author.orcid | 0000-0002-0653-0059 | - |
crisitem.author.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.author.parentorg | Istituto Nazionale di Geofisica e Vulcanologia | - |
crisitem.classification.parent | 04. Solid Earth | - |
Appears in Collections: | Article published / in press |
Files in This Item:
File | Description | Size | Format | Existing users please Login |
---|---|---|---|---|
sagnotti winkler 2012 AE 59 131-140.pdf | 1.47 MB | Adobe PDF |
WEB OF SCIENCETM
Citations
20
checked on Feb 10, 2021
Page view(s) 20
338
checked on Sep 7, 2024
Download(s)
32
checked on Sep 7, 2024