Please use this identifier to cite or link to this item:
Authors: D'Amico, S.* 
Akinci, A.* 
Malagnini, L.* 
Galea, P.* 
Title: Prediction of High-Frequency Ground Motion Parameters Based on Weak Motion Data
Issue Date: 2012
Publisher: InTechOpen
ISBN: 978-953-307-840-3
Keywords: ground motions
Subject Classification04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous 
Abstract: Large earthquakes that have occurred in recent years in densely populated areas of the world (e.g. Izmit, Turkey, 17 August 1999; Duzce, Turkey, 12 November 1999; Chi-Chi, Taiwan 20 September 1999, Bhuj, India, 26 January 2001; Sumatra 26 December 2004; Wenchuan, China, May 12, 2008; L’Aquila, Italy, April 6, 2009; Haiti, January 2010 Turkey 2011) have dramatically highlighted the inadequacy of a massive portion of the buildings erected in and around the epicentral areas. For example, the Izmit event was particularly destructive because a large number of buildings were unable to withstand even moderate levels of ground shaking, demonstrating poor construction criteria and, more generally, the inadequacy of the application of building codes for the region. During the L’Aquila earthquake (April, 06, 2009; Mw=6.3) about 300 persons were killed and over 65,000 were left homeless (Akinci and Malagnini, 2009). It was the deadliest Italian earthquake since the 1980, Irpinia earthquake, and initial estimates place the total economic loss at over several billion Euros. Many studies have already been carried out describing the rupture process and the characteristics of local site effects for this earthquake (e.g. D’Amico et al., 2010a; Akinci et al., 2010). It has been observed that many houses were unable to withstand the ground shaking. Building earthquake-resistant structures and retrofitting old buildings on a national scale may be extremely costly and may represent an economic challenge even for developed western countries, but it is still a very important issue (Rapolla et al., 2008). Planning and design should be based on available national hazard maps, which, in turn, must be produced after a careful calibration of ground motion predictive relationships (Kramer, 1996) for the region. Consequently, the assessment of seismic hazard is probably the most important contribution of seismology to society. The prediction of the earthquake ground motion has always been of primary interest for seismologists and structural engineers. For engineering purposes it is necessary to describe the ground motion according to certain number of ground motion parameters such as: amplitude, frequency content and duration of the motion. However it is necessary to use more than one of these parameters to adequately characterize a particular ground motion. Updating existing hazard maps represents one of the highest priorities for seismologists, who contribute by recomputing the ground motion and reducing the related uncertainties. The quantitative estimate of the ground motion is usually obtained through the use of the so-called predictive relationships (Kramer, 1996), which allow the computation of specific ground-motion parameter as a function of magnitude, distance from the source, and frequency and they should be calibrated in the region of interest. However this is only possible if seismic records of large earthquakes are available for the specific region in order to derive a valid attenuation relationship regressing a large number of strong-motion data (e.g. Campbell and Bozorgnia, 1994; Boore et al., 1993; Ambraseys et al., 1996, Ambraseys and Simpson, 1996; Sabetta and Pugliese, 1987, 1996; Akkar and Bommer 2010). For the Italian region the most used attenuation relationships are those obtained by Sabetta and Pugliese (1987, 1996) regressing a few data recorded for earthquakes in different tectonic and geological environments. It has been shown in several cases that it is often not adequate to reproduce the ground motion in each region of the country using a single model. Furthermore the different crustal properties from region to region play a key role in this kind of studies. However, the attenuation properties of the crust can be evaluated using the background seismicity as suggested by Chouet et al. (1978) and later demonstrated by Raoff et al. (1999) and Malagnini et al (2000a, 2007). In other words, it becomes possible to develop regionallycalibrated attenuation relationships even where strong-motion data are not available. One of the purposes of this work is to describe quantitatively the regional attenuation and source characteristics for constraining the amplitude of strong motion expected from future earthquakes in the area. In this work we describe how to use the background seismicity to perform the analysis (details in Malagnini et. 2000a, 2007). In particular, this chapter describes the procedures and techniques to study the ground motion and will focus on describing both strong motion attenuation relationships and the techniques used to derive the ground motion parameters even when strong ground motion data are not available. We will present the results obtained for different regions of the Italian peninsula, showing that the attenuation property of the crust and of the source can significantly influence the ground motion. In addition, we will show that stochastic finite-fault modeling based on a dynamic frequency approach, coupled with field investigations, confirms to be a reliable and practical method to simulate ground motion records of moderate and large earthquakes especially in regions prone to widespread structural damage.
Appears in Collections:Book chapters

Files in This Item:
File Description SizeFormat 
InTech-Prediction_of_high_frequency_ground_motion_parameters_based_on_weak_motion_data.pdfbook chapter1.33 MBAdobe PDFView/Open
Show full item record

Page view(s)

Last Week
Last month
checked on Aug 20, 2018


checked on Aug 20, 2018

Google ScholarTM