Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7943
DC FieldValueLanguage
dc.contributor.authorallMuscari, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallCesaroni, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallFiorucci, I.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallSmith, A. K.; Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, Colorado, USAen
dc.contributor.authorallFroidevaux, L.; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USAen
dc.contributor.authorallMlynczak, M. G.; NASA Langley Research Center, Hampton, Virginia, USAen
dc.date.accessioned2012-04-23T13:22:00Zen
dc.date.available2012-04-23T13:22:00Zen
dc.date.issued2012-04-13en
dc.identifier.urihttp://hdl.handle.net/2122/7943en
dc.description.abstractOn January 2009 a ground-based millimeter-wave spectrometer (GBMS) was installed at Thule Air Base (76.5ºN, 68.8ºW), Greenland, for long-term winter monitoring of several stratospheric and mesospheric trace gases in the framework of the Network for the Detection of Atmospheric Composition Change. This work is aimed at characterizing the GBMS O3 vertical profiles between 35 and 80 km altitude obtained by applying the optimal estimation method to O3 pressure-broadened spectral line measurements carried out during three winters. In this altitude range, GBMS O3 retrievals are highly sensitive to variations of the atmospheric state, and their accuracy is estimated to be the larger of 11% or 0.2 ppmv. Comparisons of GBMS O3 profiles with colocated satellite-based measurements from Aura Microwave Limb Sounder (MLS) and Thermosphere Ionosphere Mesosphere Energetics and Dynamics Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) show a good agreement below 65 km altitude once the known 10%–20% high bias of SABER O3 profiles is considered, with the GBMS displaying an averaged low bias of 9% and 17% with respect to MLS and SABER. In the nighttime mesosphere, the GBMS detects the ozone tertiary maximum within 0.1 ppmv (6%) on average with respect to the convolved MLS, SABER, and global 3-D ROSE model profiles but shifts its position to lower altitudes by 4–5 km compared to the height obtained by the other three data sets. In the 50–80 km altitude range, estimates of mesospheric O3 diurnal variation obtained from the GBMS and the convolved satellite measurements agree well within the ±1 standard deviation (~ 0.6 ppmv) of the GBMS mean profile.en
dc.language.isoEnglishen
dc.relation.ispartofJournal of geophysical researchen
dc.relation.ispartofseries/117(2012)en
dc.subjectNDACC microwaveen
dc.subject03 diurnal variationen
dc.subjectmesosphereen
dc.subjectpolar ozoneen
dc.titleStrato-mesospheric ozone measurements using ground-based millimeter-wave spectroscopy at Thule, Greenlanden
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberD07307en
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structureen
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamicsen
dc.identifier.doi10.1029/2011JD016863en
dc.relation.referencesBoyd, I. S., A. D. Parrish, L. Froidevaux, T. von Clarmann, E. Kyrölä, J. M. Russell III, and J. M. Zawodny (2007), Ground-based microwave ozone radiometer measurements compared with Aura-MLS v2.2 and other instruments at two Network for Detection of Atmospheric Composition Change sites, J. Geophys. Res., 112, D24S33, doi:10.1029/ 2007JD008720. Brasseur, G., and S. Solomon (2005), Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, 3rd ed., Springer, Dordrecht, Netherlands. Cheng, D., R. L. de Zafra, and C. Trimble (1996), Millimeter wave spectroscopic measurements over the South Pole: 2. An 11-month cycle of stratospheric ozone observations during 1993–1994, J. Geophys. Res., 101, 6781–6793, doi:10.1029/95JD03652. Coe, H., B. J. Allan, and J. M. C. Plane (2002), Retrieval of vertical profiles of NO3 from zenith sky measurements using an optimal estimation method, J. Geophys. Res., 107(D21), 4587, doi:10.1029/2002JD002111. Connor, B. J., A. Parrish, J. J. Tsou, and M. P. McCormick (1995), Error analysis for the ground-based microwave ozone measurements during STOIC, J. Geophys. Res., 100, 9283–9291, doi:10.1029/94JD00413. de Zafra, R. L. (1995), The ground-based measurements of stratospheric trace gases using quantitative millimeter wave emission spectroscopy, in Diagnostic Tools in Atmospheric Physics: Proceedings of the International School of Physics “Enrico Fermi”, pp. 23–54, Soc. Ital. Fis., Bologna, Italy. de Zafra, R. L., V. Chan, S. Crewell, C. Trimble, and J. M. Reeves (1997), Millimeter wave spectroscopic measurements over the South Pole: 3. The behavior of stratospheric nitric acid through polar fall, winter, and spring, J. Geophys. Res., 102, 1399–1410, doi:10.1029/95JD03679. Di Biagio, C., G. Muscari, A. di Sarra, R. L. de Zafra, P. Eriksen, I. Fiorucci, and D. Fuà (2010), Evolution of temperature, O3, CO, and N2O profiles during the exceptional 2009 Arctic major stratospheric warming as observed by lidar and millimeter-wave spectroscopy at Thule (76.5 N, 68.8 W), Greenland, J. Geophys. Res., 115, D24315, doi:10.1029/ 2010JD014070. Fiorucci, I., et al. (2008), Measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared data, J. Geophys. Res., 113, D14314, doi:10.1029/2008JD009831. Fiorucci, I., G. Muscari, and R. L. de Zafra (2011), Revising the retrieval technique of a long-term stratospheric HNO3 data set: From a constrained matrix inversion to the optimal estimation algorithm, Ann. Geophys., 29, 1317–1330, doi:10.5194/angeo-29-1317-2011. Froidevaux, L., et al. (1996), Validation of UARS Microwave Limb Sounder ozone measurements, J. Geophys. Res., 101, 10,017–10,060, doi:10.1029/95JD02325. Froidevaux, L., et al. (2008), Validation of Aura Microwave Limb Sounder stratospheric ozone measurements, J. Geophys. Res., 113, D15S20, doi:10.1029/2007JD008771. Hartogh, P., C. Jarchow, G. R. Sonnemann, and M. Grygalashvyly (2004), On the spatiotemporal behavior of ozone within the mesosphere/mesopause region under nearly polar night conditions, J. Geophys. Res., 109, D18303, doi:10.1029/2004JD004576. Marsh, D., A. Smith, G. Brasseur, M. Kaufmann, and K. Grossmann (2001), The existence of a tertiary ozone maximum in the high-latitude middle mesosphere, Geophys. Res. Lett., 28, 4531–4534, doi:10.1029/ 2001GL013791. Muscari, G., A. G. di Sarra, R. L. de Zafra, F. Lucci, F. Baordo, F. Angelini, and G. Fiocco (2007), Middle atmospheric O3, CO, N2O, HNO3, and temperature profiles during the warm Arctic winter 2001–2002, J. Geophys. Res., 112, D14304, doi:10.1029/2006JD007849. Nedoluha, G., R. Bevilacqua, R. Gomez, D. Thacker, W. Waltman, and T. Pauls (1995), Ground-based measurements of water vapor in the middle atmosphere, J. Geophys. Res., 100, 2927–2939, doi:10.1029/ 94JD02952. Parrish, A., R. L. de Zafra, P. M. Solomon, and J. W. Barrett (1988), A ground-based technique for millimeter wave spectroscopic observations of stratospheric trace constituents, Radio Sci., 23, 106–118, doi:10.1029/ RS023i002p00106. Parrish, A., B. J. Connor, J. J. Tsou, I. S. Mc Dermid, and W. P. Chu (1992), Ground-based microwave monitoring of stratospheric ozone, J. Geophys. Res., 97, 2541–2546, doi:10.1029/91JD02914. Pickett, H. M., R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Müller (1998), Submillimeter, millimeter, and microwave spectral line catalog, J. Quant. Spectrosc. Radiat. Transfer, 60, 883–890, doi:10.1016/S0022-4073(98)00091-0. Rodgers, C. D. (1976), Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation, Rev. Geophys., 14, 609–624, doi:10.1029/RG014i004p00609. Rodgers, C. D. (2000), Inverse Method for Atmospheric Sounding, Ser. Atmos. Oceanic Planet. Phys., vol. 2, World Sci., Singapore. Rong, P. P., J. M. Russell III, M. G. Mlynczak, E. E. Remsberg, B. T. Marshall, L. L. Gordley, and M. Lopez-Puertas (2009), Validation of Thermosphere Ionosphere Mesosphere Energetics and Dynamics/ Sounding of the Atmosphere using Broadband Emission Radiometry (TIMED/SABER) v1.07 ozone at 9.6 mm in altitude range 15–70 km, J. Geophys. Res., 114, D04306, doi:10.1029/2008JD010073. Rothman, L. S., et al. (2009), The HITRAN 2008 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 110, 533–572, doi:10.1016/j.jqsrt.2009.02.013. Russell, J. M., III, M. G. Mlynczak, L. L. Gordley, J. J. Tansock, and R. W. Esplin (1999), Overview of the SABER experiment and preliminary calibration results, Proc. SPIE Int. Soc. Opt. Eng., 3756, 277–288. Sander, S. P., et al. (2003), Chemical kinetics and photochemical data for use in stratospheric modeling: Evaluation number 14, JPL Publ., 02–25, 334 pp. Smith, A. K., and D. R. Marsh (2005), Processes that account for the ozone maximum at the mesopause, J. Geophys. Res., 110, D23305, doi:10.1029/2005JD006298. Smith, A. K., D. R. Marsh, J. M. Russell III, M. G. Mlynczak, F. J. Martin- Torres, and E. Kyrölä (2008), Satellite observations of high nighttime ozone at the equatorial mesopause, J. Geophys. Res., 113, D17312, doi:10.1029/2008JD010066. Twomey, S. (1977), Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements, Dev. Geomath., vol. 3, Elsevier Sci., New York. Waters, J. W., et al. (2006), The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura Satellite, IEEE Trans. Geosci. Remote Sens., 44, 1075–1092, doi:10.1109/TGRS.2006.873771. C. Cesaroni, I. Fiorucci, and G. Muscari, Istituto Nazionale di Geofisica e Vulcanologia, sez. Roma 2, Via di Vigna Murata 605, I-00143 Rome, Italy. (giovanni.muscari@ingv.it) L. Froidevaux, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA. M. G. Mlynczak, NASA Langley Research Center, Hampton, VA 23681, USA. A. K. Smith, Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, CO 80305, USA.en
dc.description.obiettivoSpecifico1.7. Osservazioni di alta e media atmosferaen
dc.description.obiettivoSpecifico1.10. TTC - Telerilevamentoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorMuscari, G.en
dc.contributor.authorCesaroni, C.en
dc.contributor.authorFiorucci, I.en
dc.contributor.authorSmith, A. K.en
dc.contributor.authorFroidevaux, L.en
dc.contributor.authorMlynczak, M. G.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentAtmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, Colorado, USAen
dc.contributor.departmentJet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USAen
dc.contributor.departmentNASA Langley Research Center, Hampton, Virginia, USAen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptAtmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, Colorado, USA-
crisitem.author.deptJet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA-
crisitem.author.deptNASA Langley Research Center, Hampton, Virginia, USA-
crisitem.author.orcid0000-0001-6326-2612-
crisitem.author.orcid0000-0003-2268-4389-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent01. Atmosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
2011JD016863.pdf614.69 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

4
checked on Feb 10, 2021

Page view(s) 5

529
checked on Apr 24, 2024

Download(s) 50

75
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric