Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7910
DC FieldValueLanguage
dc.contributor.authorallMasotta, M.; Dipartimento di Scienze della Terra, Sapienza—Universita` di Roma,en
dc.contributor.authorallFreda, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallGaeta, M.; Dipartimento di Scienze della Terra, Sapienza—Universita` di Roma,en
dc.date.accessioned2012-03-23T08:36:26Zen
dc.date.available2012-03-23T08:36:26Zen
dc.date.issued2012en
dc.identifier.urihttp://hdl.handle.net/2122/7910en
dc.description.abstractCrystal-poor, differentiated magmas are com- monly erupted from shallow, thermally zoned magma chambers. In order to constrain the origin of these magmas, we have experimentally investigated crystallization, differentiation and crystal-melt separation in presence of a thermal gradient. Experiments have been designed taking advantage of the innate temperature gradient of the piston cylinder apparatus and carried out on a phonolitic system at 0.3 GPa and temperature ranging from 1,050 to 800 C. Crystallization degree and melt composition in experi- mental products vary as a function of the temperature gradient. In particular, melt composition differentiates from tephri-phonolite (starting material) to phonolite moving from the hotter, glassy zone (T B 1,050 C) towards the cooler, heterogeneously crystallized zone (T B 900 C) of the charge. The heterogeneously crystal- lized zone is made up of: (1) a crystal-rich, mushy region (crystallinity [30 vol%), (2) a rigid crystal framework (crystallinity B80 vol%) and (3) glassy belts of phonolitic glass at the top. Thermal gradient experiments picture crystallization, differentiation and crystal-melt separation processes occurring in a thermally zoned environment and reveal that relatively large volumes of crystal-poor melt (glassy belts) can originate as a consequence of the instability and collapse of the rigid crystal framework. Analogously, in thermally zoned magma chambers, the development and collapse of a solidification front may represent the controlling mechanism originating large volumes of crystal-poor, differentiated magmas.en
dc.description.sponsorshipSapienza Universita` di Roma,Istituto Nazionale di Geofisica e Vulcanologia.en
dc.language.isoengen
dc.publisher.nameSpringer Verlag Germanyen
dc.relation.ispartofContributions to Mineralogy and Petrologyen
dc.relation.ispartofseries/163 (2012)en
dc.subjectExplosive eruptionsen
dc.subjectCrystal-poor magmaen
dc.subjectThermal gradienten
dc.subjectSolidification fronten
dc.titleOrigin of crystal-poor, differentiated magmas: insights from thermal gradient experimentsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber49-65en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrologyen
dc.identifier.doi10.1007/s00410-011-0658-8en
dc.relation.referencesAblay GJ, Ernst GGJ, Martı´ J, Sparks RSJ (1995) The 2 ka subplinian eruption of Montan˜a Blanca, Tenerife. Bull Volcanol 57:337–355 Anderson AT, Swihart GH, Artioli G, Geiger CA (1984) Segregation vesicles, gas filter-pressing, and igneous differentiation. J Geol 92:55–72 Andujar J, Costa F, Martı´ J, Wolff JA, Carroll MR (2008) Experimental constraints on pre-eruptive conditions of phono- litic magma from the caldera-forming El Abrigo eruption, Tenerife (Canary Islands). Chem Geol 257:173–191 Annen C (2009) From plutons to magma chambers: thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth Planet Sci Lett 284:409–416 Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45:1565–1582 Baker DR, Freda C (1999) Ising models of undercooled binary system crystallization: comparison with experimental and pegmatite textures. Am Min 84:725–732 Baker DR, Freda C (2001) Eutectic crystallization in the undercooled Orthoclase-Quartz-H2O system: experiments and simulations. Eur J Miner 13:453–466 Barnea E, Mizrahi J (1973) A generalized approach to the fluid dynamics of particulate systems. Part I. General correlation for fluidization and sedimentation in solid multiparticulate systems. Chem Eng J 5:171–189 Berndt J, Holtz F, Koepke J (2001) Experimental constraints on storage conditions in the chemically zoned phonolitic magma chamber of the Laacher See volcano. Contrib Min Petrol 140:469–486 Blake S, Ivey GN (1986) Density and viscosity gradients in zoned magma chambers, and their influence withdrawal dynamics. J Volcanol Geotherm Res 30:201–230 Bowen NL (1928) The evolution of igneous rocks. Dover, New York Chen CF, Turner JS (1980) Crystallization in double-diffusive system. J Geophys Res 85:2573–2593 Cioni R, Civetta L, Marianelli P, Metrich N, Santacroce R, Sbrana A (1995) Compositional layering and syn-eruptive mixing of periodically refilled shallow magma chamber: the A.D. 79 Plinian eruption of Vesuvius. J Petrol 36:739–776 Conte AM, Dolfi D, Gaeta M, Misiti V, Mollo S, Perinelli C (2009) Experimental constraints on evolution of leucite–basanite magma at 1 and 10–4 GPa: implications for parental composi- tions of Roman high-potassium magmas. Eur J Min 214:763–782 Conticelli S, Francalanci L, Manetti P, Cioni R, Sbrana A (1997) Petrology and geochemistry of the ultrapotassic rocks from the Sabatini Volcanic District, central Italy: the role of evolutionary processes in the genesis of variably enriched alkaline magmas. J Volcanol Geotherm Res 75:107–136 Daly RA (1925) The geology of Ascension Island. Am Acad Arts Sci Proceed 60:1–80 Davis RH, Acrivos A (1985) Sedimentation of noncolloidal particles at low Reynolds numbers. Ann Rev Fluid Mech 17:91–118 De Rita D, Funiciello R, Corda L, Sposato A, Rossi U (1993) Carta Geologica del complesso Vulcanico Sabatino. Quaderni de La Ricerca Scientifica. Progetto Finalizzato Geodinamica Monog- rafie Finali, vol 11. C.N.R, Rome Devine JD, Gardner JE, Brack HP, Layne GD, Rutherford MJ (1995) Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am Min 80:319–328 Dufek J, Bachmann O (2010) Quantum magmatism: magmatic compositional gaps generated by melt-crystal dynamics. Geol- ogy 38:687–690 Fabbrizio A, Carroll MR (2008) Experimental constraints on the differentiation process and pre-eruptive conditions in the mag- matic system of Phlegrean Fields (Naples, Italy). J Volcanol Geotherm Res 171:88–102 Facchinelli V, Gaeta M (1992) Indicazioni petrogenetiche dai granati birifrangenti dei proietti sialici nelle vulcaniti alcalino potassiche dei Monti Sabatini (Lazio). Rendiconti Lincei 34:295–310 Fowler SJ, Spera FJ (2010) A metamodel for crustal magmatism: phase equilibria of giant ignimbrites. J Petrol 51:1783–1830 Franzini M, Leoni M, Saitta M (1972) A simple method to evaluate the matrix effects in X-ray fluorescence analysis. Spectrometry 1:151–154 Freda C, Baker DR, Ottolini L (2001) Reduction of water loss from gold-palladium capsules during piston-cylinder experiments by use of pyrophyllite powder. Am Min 86:234–237 Freise M, Holtz F, Koepke J, Scoates J, Leyrith H (2003) Experi- mental constraints on the storage conditions of phonolites from Kerguelen Archipelago. Contrib Miner Petrol 145:659–672 Gaeta M, Di Rocco T, Freda C (2009) Carbonate assimilation in open magmatic systems: the role of melt-bearing skarns and cumulate- forming processes. J Petrol 50:361–385 Hammer JE, Rutherford MJ (2002) An experimental study of the kinetics of decompression-induced crystallization in silicic melt. J Geophys Res 107:1–24 Harms E, Gardner JE, Schminke HU (2004) Phase equilibria of the Lower Laacher See Tephra (East Eifel, Germany): constraints on pre-eruptive storage conditions of a phonolitic magma reservoir. J Volcanol Geotherm Res 134:135–148 Humphreys MCS, Holness MB (2010) Melt-rich segregations in the Skaergaard Marginal Border Series: tearing of a vertical silicate mush. Lithos 119:181–192 Jackson MD, Cheadle MJ, Atherton MP (2003) Quantitative model- ling of granitic melt generation and segregation in the continen- tal crust. J Geophys Res 108:2332 Kirkpatrick RJ (1981) Kinetics of crystallization of igneous rocks. Rev Min Geochem 8:321–395 Lesher CE, Walker D (1988) Cumulate maturation and melt migration in a temperature gradient. J Geophys Res 93:10295–10311 Marsh BD (1996) Solidification fronts and magmatic evolution. Min Mag 60:5–40 Marsh BD (2002) On bimodal differentiation by solidification front instability in basaltic magmas, part 1: basic mechanics. Geochim Cosmochim Acta 66:2211–2229 Masotta M, Gaeta M, Gozzi F, Marra F, Palladino DM, Sottili G (2010) H2O- and temperature-zoning in magma chambers: the example of the Tufo Giallo della Via Tiberina eruptions (Sabatini Volcanic District, central Italy). Lithos 118:119–130 McBirney AR, Baker BH, Nilson RH (1985) Liquid fractionation. Part 1: basic principles and experimental simulations. J Volcanol Geotherm Res 24:1–24 McKenzie D (1984) The generation and compaction of partially molten rock. J Petrol 25:713–765 Palladino DM, Agosta E (1997) Pumice fall deposits of the western Vulsini Volcanoes (central Italy). J Volcanol Geotherm Res 78:77–102 Peccerillo A (2005) Plio-quaternary volcanism in Italy. Springer, Berlin Philpotts AR, Carrol MR, Hill JM (1996) Crystal-mush compaction and the origin of pegmatitic segregation sheets in a thick flood- basalt flow in the Mesozoic Hartford Basin, Connecticut. J Petrol 37:811–836 Piochi M, Bruno PP, De Astis G (2005) Relative roles of rifting tectonics and magma ascent processes: inferences from geo- physical, structural, volcanological, and geochemical data for the Neapolitan volcanic region (southern Italy). Geochem Geophys Geosyst 6:Q07005. doi:10.1029/2004GC000885 Rabinowicz M, Genthon P, Ceuleneer G, Hillairet M (2001) Compaction in a mantle mush with high melt concentrations and the generation of magma chambers. Earth Planet Sci Lett 188:313–328 Rice A (1981) Convective fractionation: a mechanism to provide cryptic zoning (macrosegregation), layering crescumulates, banded tuffs and explosive volcanism in igneous processes. J Geophys Res 86:405–417 Schmitt AK, Wetzel F, Cooper KM, Zou H, Wo¨rner G (2010) Magmatic longevity of Laacher See Volcano (Eifel, Germany) indicated by U-Th dating of intrusive carbonatites. J Petrol 51:1053–1085 Schultz RA (1993) Brittle strength of basaltic rock masses with applications to Venus. J Geophys Res 98:10883–10895 Shaw HR (1980) The fracture mechanisms of magma transport from the mantle to the surface. In: Hargraves RB (ed) Physics of magmatic processes. Princeton University Press, Princeton Shea T, Larsen JF, Gurioli L, Hammer JE, Houghton BF, Cioni R (2009) Leucite crystal: surviving witnesses of magmatic pro- cesses preceding the 79 AD eruption at Vesuvius, Italy. Earth Planet Sci Lett 281:88–98 Sisson TW, Bacon CR (1999) Gas-driven filter pressing in magmas. Geology 27:613–616 Sottili G, Palladino DM, Marra F, Jicha B, Karner DB, Renne P (2010) Geochronology of the most recent activity in the Sabatini Volcanic District, Roman Province, central Italy. J Volcanol Geotherm Res 196:20–30 Spera FJ (1984) Some numerical experiments on the withdrawal of magma from crustal reservoirs. J Geophys Res 89:8222–8236 Spera FJ, Oldenburg CM, Christiensen C, Todesco M (1995) Simulations of convection with crystallization in the system KAlSi2O6–CaMgSi2O6: implications for compositionally zoned magma bodies. Am Min 40:1188–1207 Tegner C, Thy P, Holness MB, Jakobsen JK, Lesher CE (2009) Differentiation and compaction in the Skaergaard intrusion. J Petrol 5:813–840 Watson EB, Wark DA, Price JD, Van Orman JA (2002) Mapping the thermal structure of solid-media pressure assembly. Contrib Min Petrol 142:640–652 Wo¨rner G, Schminke HU (1984) Petrogenesis of the zoned Laacher See tephra. J Petrol 25:836–851en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn0010-7999en
dc.relation.eissn1432-0967en
dc.contributor.authorMasotta, M.en
dc.contributor.authorFreda, C.en
dc.contributor.authorGaeta, M.en
dc.contributor.departmentDipartimento di Scienze della Terra, Sapienza—Universita` di Roma,en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDipartimento di Scienze della Terra, Sapienza—Universita` di Roma,en
item.fulltextWith Fulltext-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextrestricted-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.deptDipartimento di Scienze della Terra, Sapienza—Universita` di Roma,-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Masotta et al.PDFmain article1.37 MBAdobe PDF
Show simple item record

Page view(s) 50

110
Last Week
1
Last month
1
checked on May 27, 2019

Download(s)

20
checked on May 27, 2019

Google ScholarTM

Check

Altmetric