Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7910
Authors: Masotta, M.* 
Freda, C.* 
Gaeta, M.* 
Title: Origin of crystal-poor, differentiated magmas: insights from thermal gradient experiments
Issue Date: 2012
Series/Report no.: /163 (2012)
DOI: 10.1007/s00410-011-0658-8
URI: http://hdl.handle.net/2122/7910
Keywords: Explosive eruptions
Crystal-poor magma
Thermal gradient
Solidification front
Subject Classification04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology 
Abstract: Crystal-poor, differentiated magmas are com- monly erupted from shallow, thermally zoned magma chambers. In order to constrain the origin of these magmas, we have experimentally investigated crystallization, differentiation and crystal-melt separation in presence of a thermal gradient. Experiments have been designed taking advantage of the innate temperature gradient of the piston cylinder apparatus and carried out on a phonolitic system at 0.3 GPa and temperature ranging from 1,050 to 800 C. Crystallization degree and melt composition in experi- mental products vary as a function of the temperature gradient. In particular, melt composition differentiates from tephri-phonolite (starting material) to phonolite moving from the hotter, glassy zone (T B 1,050 C) towards the cooler, heterogeneously crystallized zone (T B 900 C) of the charge. The heterogeneously crystal- lized zone is made up of: (1) a crystal-rich, mushy region (crystallinity [30 vol%), (2) a rigid crystal framework (crystallinity B80 vol%) and (3) glassy belts of phonolitic glass at the top. Thermal gradient experiments picture crystallization, differentiation and crystal-melt separation processes occurring in a thermally zoned environment and reveal that relatively large volumes of crystal-poor melt (glassy belts) can originate as a consequence of the instability and collapse of the rigid crystal framework. Analogously, in thermally zoned magma chambers, the development and collapse of a solidification front may represent the controlling mechanism originating large volumes of crystal-poor, differentiated magmas.
Appears in Collections:Papers Published / Papers in press

Files in This Item:
File Description SizeFormat 
Masotta et al.PDFmain article1.37 MBAdobe PDFView/Open
Show full item record

Page view(s)

101
Last Week
0
Last month
0
checked on Aug 14, 2018

Download(s)

20
checked on Aug 14, 2018

Google ScholarTM

Check

Altmetric