Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7907
DC FieldValueLanguage
dc.contributor.authorallMaffione, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallPucci, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallSagnotti, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallSperanza, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2012-03-23T08:28:31Zen
dc.date.available2012-03-23T08:28:31Zen
dc.date.issued2012-04en
dc.identifier.urihttp://hdl.handle.net/2122/7907en
dc.description.abstractAnisotropy of magnetic susceptibility (AMS) represents a valuable proxy able to detect subtle strain effects in very weakly deformed sediments. In compressive tectonic settings, the magnetic lineation is commonly parallel to fold axes, thrust faults, and local bedding strike, while in extensional regimes, it is perpendicular to normal faults and parallel to bedding dip directions. The Altotiberina Fault (ATF) in the northern Apennines (Italy) is a Plio-Quaternary NNW–SSE low-angle normal fault; the sedimentary basin (Tiber basin) at its hanging-wall is infilled with a syn-tectonic, sandy-clayey continental succession. We measured the AMS of apparently undeformed sandy clays sampled at 12 sites within the Tiber basin. The anisotropy parameters suggest that a primary sedimentary fabric has been overprinted by an incipient tectonic fabric. The magnetic lineation is well developed at all sites, and at the sites from the western sector of the basin it is oriented sub-perpendicular to the trend of the ATF, suggesting that it may be related to extensional strain. Conversely, the magnetic lineation of the sites from the eastern sector has a prevailing N–S direction. The occurrence of triaxial to prolate AMS ellipsoids and sub-horizontal magnetic lineations suggests that a maximum horizontal shortening along an E–W direction occurred at these sites. The presence of compressive AMS features at the hanging-wall of the ATF can be explained by the presence of gently N–Strending local folds (hardly visible in the field) formed by either passive accommodation above an undulated fault plane, or rollover mechanism along antithetic faults. The long-lasting debate on the extensional versus compressive Plio-Quaternary tectonics of the Apennines orogenic belt should now be revised taking into account the importance of compressive structures related to local effects.en
dc.language.isoEnglishen
dc.publisher.nameSpringer Verlag New York Incen
dc.relation.ispartofInternational journal of earth sciencesen
dc.relation.ispartofseries3/101 (2012)en
dc.relation.isversionofhttp://hdl.handle.net/2122/6633en
dc.subjectAMSen
dc.subjectMagnetic fabricen
dc.subjectDetachment faulten
dc.subjectLow-angle normal faulten
dc.subjectAltotiberina faulten
dc.subjectCentralen
dc.titleMagnetic fabric of Pleistocene continental clays from the hanging-wall of an active low-angle normal fault (Altotiberina Fault, Italy)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber849–861en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.identifier.doi10.1007/s00531-011-0704-9en
dc.relation.referencesAmbrosetti P, Carboni MG, Conti MA, Costantini A, Esu D, Gadin A, Girotti O, Lazzarotti A, Mazzanti R, Nicosia U, Parisi R, Sandrelli F (1978) Evoluzione paleogeografica e tettonica dei bacini tosco-umbro-laziali nel Pliocene e nel Pleistocene inferiore. Mem Soc Geol Ital 19:573–580 Ambrosetti P, Bosi C, Carraro F, Ciaranfi N, Panizza M, Papani G, Vezzani L, Zanferrari A (1987) 1:500, 000 Neotectonic map of Italy. CNR Progetto Finalizzato Geodinamica, Litografia Artistica Cartografica, Florence Anelli L, Gorza M, Pieri M, Riva M (1994) Subsurface well data in the northern Apennines (Italy). Mem Soc Geol Ital 48:461–471 Argenti P (2004) Plio-quaternary mammal fossiliferous sites of Umbria (Central Italy). Geol Rom (2003–2004) 37:67–78 Averbuch O, Mattei M, Kissel C, Frizon de Lamotte D, Speranza F (1995) Cine´matique des de´formations au sein d’un syste´me chevauchant aveugle: l’exemple de la ‘‘Montagna dei Fiori’’ (front des Apenins centraux, Italie). Bull Soc Ge´ol France 5:451–461 Barchi MR, Ciaccio MG (2009) Seismic images of an extensional basin, generated at the hanging-wall of a low-angle normal fault: the case of the Sansepolcro basin (Central Italy). Tectonophysics 479:285–293 Barchi MR, Minelli G, Pialli G (1998a) The CROP 03 profile: a synthesis of results on deep structures of the Northern Apennines. Mem Soc Geol Ital 52:383–400 Barchi MR, De Feyter A, Magnani MB, Minelli G, Pialli G, Sotera BM (1998b) Extensional tectonics in the Northern Apennines (Italy): evidence from the CROP03 deep seismic reflection line. Mem Soc Geol Ital 52:527–538 Barchi M, De Feyter A, Magnani MB, Minelli G, Pialli G, Sotera BM (1998c) The structural style of the Umbria-Marche fold and thrust belt. Mem Soc Geol Ital 52:557–578 Barchi MR, Paolacci S, Paeselli C, Pialli G, Merlini S (1999) Geometria delle deformazioni estensionali recenti del bacino dell’Alta Val Tiberina fra S. Giustino Umbro e Perugia: evidenze geofisiche e consideraioni geologiche. Boll Soc Geol Ital 118:617–625 Bernini M, Boccaletti M, Moratti G, Papani G, Sani F, Torelli L (1990) Episodi compressivi neogenico-quaternari nell’area estensionale tirrenica nord-orientale Dati in mare e a terra. Mem Soc Geol Ital 45:577–589 Boccaletti M, Cenina-Feroni A, Martinelli P, Moratti G, Plesi G, Sani F (1992) Late Miocene-Quaternary compressive events in the Tyrrhenian side of the Northern Apennines. Ann Tectonicae 4:214–230 Boccaletti M, Cerrina Feroni A, Martinelli P, Moratti G, Plesi G, Sani F (1994) L’area tosco-laziale come dominio di transizione tra il bacino tirrenico e i thrusts esterni: rassegna di dati mesostrutturali e possibili relazioni con le discontinuita` del ‘‘Ciclo Neoautoctono’’. Mem Descr Carta Geol Ital 49:9–22 Boccaletti M, Granelli G, Sani F (1997) Tectonic regime, granite emplacement and crustal structure in the inner zone of the northern Apennines (Tuscany, Italy): a new hypothesis. Tectonophysics 270:127–143 Boncio P, Brozzetti F, Lavecchia G (1996) State of stress in the Northern Umbria-Marche Apennines (Central Italy): inferences from microearthquakes and fault kinematics analyses. Ann Tecton 10:80–97 Boncio P, Brozetti F, Ponziani F, Barchi M, Lavecchia G, Pialli G (1998) Seismicity and extensional tectonics in the northern Umbria-Marche Apennines. Mem Soc Geol Ital 52:539–555 Boncio P, Brozzetti F, Lavecchia G (2000) Architecture and seismotectonics of a regional low-angle normal fault zone in central Italy. Tectonics 19:1038–1055 Bonini M (1998) Chronology of deformation and analogue modelling of the Plio-Pleistocene ‘‘Tiber Basin’’: implications for the evolution of the Northern Apennines (Italy). Tectonophysics 285:147–165 Bonini M, Tanini C (2009) Tectonics and quaternary evolution of the Northern Apennines watershed area (upper course of Arno and Tiber rivers, Italy). Geol J 44:2–29. doi:10.1002/gj.1122 Borradaile GJ (1988) Magnetic susceptibility, petrofabrics and strain. Tectonophysics 156(1–2):1–20. doi:10.1016/0040-1951 Borradaile GJ, Henry B (1997) Tectonic applications of magnetic susceptibility and its anisotropy. Earth Sci Rev 42(1–2):49–93. doi:10.1016/S0012-8252 Borradaile GJ, Jackson M (2004) Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks. In: Martı´n-Herna´ndez F, Lu¨neburg C, Aubourg C, Jackson M (eds) Magnetic Fabric methods and applications. Geol Soc Lond Spec Publ 238:299–360 Borradaile GJ, Mothersill J, Tarling D, Alford C (1986) Sources of magnetic susceptibility in a slate. Earth Planet Sci Lett 76:336– 340 Bott MHP (2009) Stresses in planar normal faulting: shallow compression caused by fault-plane mismatch. J Struct Geol 31:354–365 Brozzetti F (1995) Stile deformativo della tettonica distensiva nell’Umbria Occidentale: l’esempio dei Massicci Mesozoici Perugini. Stud Geol Camerti 1995/1:105–119 Brozzetti F, Boncio P, La Vecchia G, Pace B (2009) Present activity and seismogenic potential of a low-angle normal fault system (Citta` di Castello, Italy): constraints from surface geology, seismic reflection data and seismicity. Tectonophysics 463:31–46 Carta Magnetica d’Italia al (2005) CD-ROM, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy Cattuto C, Cencetti C, Fisauli M, Gregori L (1995) I bacini pleistocenici di Anghiari e Sansepolcro nell’alta valle del Tevere. II Quat 8:119–128 Chiaraluce L, Charabba C, Collettini C, Cocco M (2007) Architecture and mechanics of an active low-angle normal fault: Alto Tiberina Fault, northern Apennines, Italy. J Geophys Res 112:B10310. doi:10.1029/2007JB005015 Cifelli F, Mattei M, Hirt AM, Gu¨nther A (2004) The origin of tectonic fabrics in ‘‘undeformed’’ clays: the early stages of deformation in extensional sedimentary basins. Geophys Res Lett 31(9): L09604. doi:10.1029/2004GL019609 Cifelli F, Mattei M, Chadima M, Hirt AM, Hansen A (2005) The origin of tectonic lineation in extensional basins: combined neutron texture and magnetic analyses on ‘‘undeformed’’ clays. Earth Planet Sci Lett 235:62–78 Collettini C (2002) Hypothesis for the mechanics and seismic behaviour of low-angle normal faults: the example of the Altotiberina fault Northern Apennines. Ann Geophys 45:683–697 Collettini C, Barchi MR (2002) A low-angle normal fault in the Umbria region (Central Italy): a mechanical model for the related microseismicity. Tectonophysics 359:97–115. doi:10.1016/S0040- 1951(02)00441-9 Collettini C, Barchi MR, Paeselli C, Federico C, Pialli G (2000) Seismic expression of active extensional faults in northern Umbria (central Italy). In: Cello G, Tondi E (eds) The resolution of geological analysis and models for earthquake faulting studies. J Geodyn 29:309–321 Collettini C, De Paola N, Holdsworth RE, Barchi MR (2006) The development and behaviour of low-angle normal faults during Cenozoic asymmetric extension in the Northern Apennines. Italy J Struct Geol 28:333–352 D’Agostino N, Mantenuto S, D’Anastasio E, Avallone A, Barchi M, Collettini C, Radicioni F, Stoppini A, Fastellini G (2009) Contemporary crustal extension in the Umbria–Marche Apennines from regional CGPS networks and comparison between geodetic and seismic deformation. Tectonophysics 476:3–12. doi:10.1016/j.tecto.2008.09.03 Delle Donne D, Piccardi L, Odum JK, Stephenson WJ, Williams RA (2007) Highresolution shallow reflection seismic image and surface evidence of the Upper Tiber Basin active faults (Northern Apennines, Italy). Boll Soc Geol Ital 126(2):323–331 Faccenna C, Speranza F, D’Ajello Caracciolo F, Mattei M, Oggiano G (2002) Extensional tectonics on Sardinia (Italy): insights into the arc-back-arc transitional regime. Tectonophysics 356:213–232 Ghisetti F, Barchi M, Bally AW, Moretti I, Vezzani L (1993) Conflicting balanced structural sections across the central Apennines (Italy): problems and implications. In: Spencer AM (ed) Generation, accumulation and production of Europe’s hydrocarbons III. Eur Assoc Petrol Geol Spec Publ 3:219–231, Springer-Verlag, Berlin Graham JW (1966) Significance of magnetic anisotropy in Appalachian sedimentary rocks. In: Steinhart JS, Smith TJ (eds) The Earth beneath the continents. Geophysical Monograph Series 10. American Geophysical Union, Washington, DC, pp 627–648 Hreinsdo´ttir S, Bennett RA (2009) Active aseismic creep on the Alto Tiberina low-angle normal fault, Italy. Geology 37:683–686. doi:10.1130/G30194A.1 Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Surv Geophys 5(1):37–82. doi:10.1007/ BF01450244 Hrouda F, Jana`k F (1976) The changes in shape of the magnetic susceptibility ellipsoid during progressive metamorphism and deformation. Tectonophysics 34:135–148 Hrouda F, Kahan S (1991) The magnetic fabric relationship between sedimentary and basement nappes in the High Tatra Mts (N Slovakia). J Struct Geol 13:431–442 ISPRA-Carg Project, Fo. 288 ‘‘Arezzo’’ of the Carta Geologica d’Italia, in press by APAT; pre print at http://www.apat.gov. it/Media/carg/index.html ISPRA-Carg Project, Fo. 289 ‘‘Citta` di Castello’’ of the Carta Geologica d’Italia, in press by APAT; pre print at http://www. apat.gov.it/Media/carg/index.html Janecke S, Vandenburg CJ, Blankenau JJ (1998) Geometry, mechanisms and significance of extensional folds from examples in the Rocky Mountain Basin and Range province, USA. J Struct Geol 20(7):841–856 Jelinek V (1978) Statistical processing of magnetic susceptibility on groups of specimens. Stud Geophys Geod 22:50–62 Jelinek V (1981) Characterization of the magnetic fabric of rocks. Tectonophysics 79:63–67 Lavecchia G (1988) The Tyrrhenian-Apennines system: structural setting and seismotectogenesis. Tectonophysics 147:263–296 Lavecchia G, Brozzetti F, Barchi MR, Keller JVA, Menichetti M (1994) Seismotectonic zoning in east-central Italy deduced from the analysis of the Neogene to present deformations and related stress fields. Geol Soc Amer Bull 106:1107–1120 Lowrie W (1989) Magnetic analysis of rock fabric. In: James DE (ed) Encyclopedia of Solid Earth Geophysics. Van Nostrand Reinhold Company, New York, pp 698–706 MaffioneM, Speranza F, Faccenna C, Cascella A, Vignaroli G, Sagnotti L (2008) A synchronous Alpine and Corsica-Sardinia rotation. J Geophys Res 113:B03104. doi:10.1029/2007JB005214 Mattei M, Sagnotti L, Faccenna C, Funiciello R (1997) Magnetic fabric of weakly deformed clay-rich sediments in the Italian peninsula: Relationship with compressional and extensional tectonics. Tectonophysics 271:107–122 Mattei M, Speranza F, Argentieri A, Rossetti F, Sagnotti L, Funiciello R (1999) Extensional tectonics in the Amantea basin (Calabria, Italy): a comparison between structural and magnetic anisotropy data. Tectonophysics 307:33–49 Pares J (2004) How deformed are weakly deformed mudrocks? Insights from magnetic anisotropy. Geol Soc Lond Spec Publ 238:191–203. doi:10.1144/GSL.SP.2004.238.01.13 Pares JM, Van der Pluijm BA, Dinares-Turell J (1999) Evolution of magnetic fabrics during incipient deformation of mudrocks (Pyrenees, northern Spain). Tectonophysics 307:1–14 Pauselli C, Federico C (2002) The brittle/ductile transition along the CROP03 seismic profile: relationship with the geological features. Boll Soc Geol Ital 1:25–35 Pauselli C, Barchi MR, Federico C, Magnani MB, Minelli G (2006) The crustal structure of the Northern Apennines (Central Italy): an insight by the CROP03 seismic line. Am J Sci 306:428–450 Petronio C, Argenti P, Caloi L, Esu D, Girotti O, Sardella R (2002) Updating Villafranchian mollusc and mammal faunas of Umbria and Latium (Central Italy). Geol Rom (2000–2002) 36:369–387 Piccinini D, Cattaneo M, Chiarabba C, Chiaraluce L, De Martin M, Di Bona M, Moretti M, Selvaggi G, Augliera P, Spallarossa D, Ferretti G, Michelini A, Govoni A, Di Bartolomeo P, Romanelli M, Fabbri J (2003) A microseismic study in a low seismicity area of Italy: the Citta` di Castello 2000–2001 experiment. Ann Geophys 46(6):1315–1324 Rees AI (1961) The effect of water currents on the magnetic remanence and anisotropy of susceptibility of some sediments. Geophys J Royal Astron Soc 5:251–635 Roberts AP, Chang L, Rowan CJ, Horng CS, Florindo F (2011) Magnetic properties of sedimentary greigite (Fe3S4): an update. Rev Geophys 49:RG1002. doi:10.1029/2010RG000336 Rochette P (1987) Magnetic susceptibility of the rock matrix related to magnetic fabric studies. J Struct Geol 9:1015–1020 Rochette P, Jackson MJ, Aubourg C (1992) Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Rev Geophys 30(3):209–226 Sagnotti L, Speranza F (1993) Magnetic fabric analysis of the Plio- Pleistocene clayey units of the Sant’Arcangelo basin, southern Italy. Phys Earth Planet Int 77:165–176 Sagnotti L, Winkler A (1999) Rock magnetism and palaeomagnetism of greigite-bearing mudstones in the Italian peninsula. Earth Planet Sci Lett 165:67–80 Sagnotti L, Faccenna C, Funiciello R, Mattei M (1994) Magnetic fabric and structural setting of Plio-Pleistocene clayey units in an extensional regime: the Tyrrhenian margin of Central Italy. J Struct Geol 16:1243–1257 Sagnotti L, Speranza F, Winkler A, Mattei M, Funiciello R (1998) Magnetic fabric of clay sediments from the external northern Apennines (Italy). Phys Earth Planet Inter 105:73–93 Schlische RW (1995) Geometry and origin of fault-related folds in extensional settings. AAPG Bull 79:1661–1678 Speranza F, Maniscalco R, Mattei M, Di Stefano A, Butler RWH, Funiciello R (1999) Timing and magnitude of rotations in the frontal thrust systems of southwestern Sicily. Tectonics 18(6):1178–1197 Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman and Hall, London 217 ppen
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn1437-3254en
dc.relation.eissn1437-3262en
dc.contributor.authorMaffione, M.en
dc.contributor.authorPucci, S.en
dc.contributor.authorSagnotti, L.en
dc.contributor.authorSperanza, F.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0002-3557-2936-
crisitem.author.orcid0000-0003-3944-201X-
crisitem.author.orcid0000-0001-5492-8670-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
maffione et al 2012 Int J Earth Sci 101 849-861.pdf1.2 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 10

6
checked on Feb 10, 2021

Page view(s) 50

181
checked on Apr 17, 2024

Download(s)

19
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric