Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7705
DC FieldValueLanguage
dc.contributor.authorallD'Agostino, N.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallCheloni, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallFornaro, G.; IREA, CNR Napolien
dc.contributor.authorallGiuliani, R.; Dipartimento Protezione Civileen
dc.contributor.authorallReale, D.; IREA, CNR Napolien
dc.date.accessioned2012-02-03T13:12:40Zen
dc.date.available2012-02-03T13:12:40Zen
dc.date.issued2012-02-03en
dc.identifier.urihttp://hdl.handle.net/2122/7705en
dc.description.abstractThe inversion of multitemporal DInSAR and GPS measurements unravels the coseismic and postseismic (afterslip) slip distributions associated with the 2009 MW 6.3 L’Aquila earthquake and provides insights into the rheological properties and long-term behavior of the responsible structure, the Paganica fault. Well-resolved patches of high postseismic slip (10–20 cm) appear to surround the main coseismic patch (maximum slip ≈1 m) through the entire seismogenic layer above the hypocenter without any obvious depth-dependent control. Time series of postseismic displacement are well reproduced by an exponential function with best-fit decay constants in the range of 20–40 days. A sudden discontinuity in the evolution of released postseismic moment at ≈130 days after the main shock does not correlate with independent seismological and geodetic data and is attributed to residual noise in the InSAR time series. The data are unable to resolve migration of afterslip along the fault probably because of the time interval (six days) between the main shock and the first radar acquisition. Surface fractures observed along the Paganica fault follow the steepest gradients of postseismic line-of-sight satellite displacements and are consistent with a sudden and delayed failure of the shallow layer in response to upward tapering of slip. The occurrence of afterslip at various levels through the entire seismogenic layer argues against exclusive depth-dependent variations of frictional properties on the fault, supporting the hypothesis of significant horizontal frictional heterogeneities and/or geometrical complexities. We support the hypothesis that such heterogeneities and complexities may be at the origin of the long-term variable behavior suggested by the paleoseismological studies. Rupture of fault patches with dimensions similar to that activated in 2009 appears to have a ≈500 year recurrence time interval documented by paleoseismic and historical studies. In addition to that, paleoseismological evidence of large (>0.5 m) coseismic offsets seems to require seismic events, recurring every 1000–2000 years, characterized by (1) multisegment linkage, (2) surface ruptures larger than in 2009, and (3) complete failure of the 2009 coseismic and postseismic patches.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/117(2012)en
dc.subjectAfterslipen
dc.subjectL'Aquilaen
dc.subjectApenninesen
dc.subjectpostseismicen
dc.titleSpace-time distribution of afterslip following the 2009 L’Aquila earthquakeen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB02402en
dc.identifier.URLhttp://www.agu.org/pubs/crossref/2012/2011JB008523.shtmlen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformationsen
dc.identifier.doi10.1029/2011JB008523en
dc.relation.referencesAmoruso, A., and L. Crescentini (2009), Slow diffusive fault slip propagation following the 2009/04/06 L'Aquila earthquake, Italy, Geophys. Res. Lett., 36, L24306, doi:10.1029/2009GL041503.[AGU] Atzori, S., and A. Antonioli (2011), Optimal fault resolution in geodetic inversion of coseismic data, Geophys. J. Int., 185, 529–538, doi:10.1111/j.1365-246X.2011.04955.x.[CrossRef] Atzori, S., M. Manunta, G. Fornaro, A. Ganas, and S. Salvi (2008), Postseismic displacement of the 1999 Athens earthquake retrieved by the Differential Interferometry by Synthetic Aperture Radar time series, J. Geophys. Res., 113, B09309, doi:10.1029/2007JB005504.[AGU] Atzori, S., et al. (2009), Finite fault inversion of DInSAR coseismic displacement of the 2009 L'Aquila earthquake (central Italy), Geophys. Res. Lett., 36, L15305, doi:10.1029/2009GL039293.[AGU] Avallone, A., et al. (2011), Very high rate (10 Hz) GPS seismology for moderate-magnitude earthquakes: The case of the MW 6.3 L'Aquila (central Italy) event, J. Geophys. Res., 116, B02305, doi:10.1029/2010JB007834.[AGU] Bagnaia, R., A. D'Epifanio, and S. Sylos Labini (1992), Aquila and subaequan basins: An example of Quaternary evolution in central Apennines, Italy, Quat. Nova, 2, 187–209. Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti (2002), A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Trans. Geosci. Remote Sens., 40, 2375–2383, doi:10.1109/TGRS.2002.803792.[CrossRef] Bertini, T., and C. Bosi (1993), La tettonica quaternaria della conca di Fossa (L'Aquila), Quaternario, 6, 293–314. Bilham, R. (2005), Coseismic strain and the transition to surface afterslip recorded by creep-meters near the 2004 Parkfield epicenter, Seismol. Res. Lett., 76, 49–57.[CrossRef] Blumetti, A. M. (1995), Neotectonic investigations and evidence of paleo-seismicity in the epicentral area of the January–February 1703 central Italy earthquakes, Bull. Assoc. Eng. Geol., 6, 83–100. Boatwright, J., and M. Cocco (1996), Frictional constraints on crustal faulting, J. Geophys. Res., 101(B6), 13,895–13,909.[AGU] Boncio, P., G. Lavecchia, and B. Pace (2004), Defining a model of 3D seismogenic sources for Seismic Hazard Assessment applications: The case of central Apennines (Italy), J. Seismol., 8, 407–425.[CrossRef] Boncio, P., A. Pizzi, F. Brozzetti, G. Pomposo, G. Lavecchia, D. Di Naccio, and F. Ferrarini (2010), Coseismic ground deformation of the 6 April 2009 L'Aquila earthquake (central Italy, Mw6.3), Geophys. Res. Lett., 37, L06308, doi:10.1029/2010GL042807.[AGU] Bürgmann, R., et al. (2002), Time-dependent distributed afterslip on and deep below the Izmit earthquake rupture, Bull. Seismol. Soc. Am., 92, 126–137, doi:10.1785/0120000833.[CrossRef] Cheloni, D., et al. (2010), Coseismic and initial post-seismic slip of the 2009 Mw 6.3 L'Aquila earthquake, Italy, from GPS measurements, Geophys. J. Int., 181, 1539–1546, doi:10.1111/j.1365-246X.2010.04584.x.[CrossRef] Chiarabba, C., L. Jovane, and R. Di Stefano (2005), A new view of Italian seismicity using 20 years of instrumental recordings, Tectonophysics, 395, 251–268, doi:10.1016/j.tecto.2004.09.013.[CrossRef] Chiarabba, C., et al. (2009), The 2009 L'Aquila (central Italy) MW 6.3 earthquake: Main shock and aftershocks, Geophys. Res. Lett., 36, L18308, doi:10.1029/2009GL039627.[AGU] Chiaraluce, L., L. Valoroso, D. Piccinini, R. Di Stefano, and P. De Gori (2011), The anatomy of the 2009 L'Aquila normal fault system (central Italy) imaged by high resolution foreshock and aftershock locations, J. Geophys. Res., 116, B12311, doi:10.1029/2011JB008352.[AGU] Cinti, F. R., D. Pantosti, P. M. De Martini, S. Pucci, R. Civico, S. Pierdominici, L. Cucci, C. A. Brunori, S. Pinzi, and A. Patera (2011), Evidence for surface faulting events along the Paganica fault prior to the 6 April 2009 L'Aquila earthquake (central Italy), J. Geophys. Res., 116, B07308, doi:10.1029/2010JB007988.[AGU] Cirella, A., A. Piatanesi, M. Cocco, E. Tinti, L. Scognamiglio, A. Michelini, A. Lomax, and E. Boschi (2009), Rupture history of the 2009 L'Aquila earthquake from non-linear inversion of strong motion and GPS data, Geophys. Res. Lett., 36, L19304, doi:10.1029/2009GL039795.[AGU] D'Agostino, N., S. Mantenuto, E. D'Anastasio, R. Giuliani, M. Mattone, S. Calcaterra, P. Gambino, and L. Bonci (2011), Evidence for localized active extension in the central Apennines (Italy) from Global Positioning System observations, Geology, 39, 291–294, doi:10.1130/G31796.1.[CrossRef] Di Stefano, R., C. Chiarabba, L. Chiaraluce, M. Cocco, P. De Gori, D. Piccinini, and L. Valoroso (2011), Fault zone properties affecting the rupture evolution of the 2009 (Mw 6.1) L'Aquila earthquake (central Italy): Insights from seismic tomography, Geophys. Res. Lett., 38, L10310, doi:10.1029/2011GL047365.[AGU] Emergeo Working Group (2009), Evidence for surface rupture associated with the Mw 6.3 L'Aquila earthquake sequence of April 2009 (central Italy), Terra Nova, 22, 43–51, doi:10.1111/j.1365-3121.2009.00915.x.[CrossRef] Falcucci, E., et al. (2009), The Paganica Fault and surface coseismic ruptures caused by the 6 April 2009 earthquake (L'Aquila, central Italy), Seismol. Res. Lett., 80(6), 940–950, doi:10.1785/gssrl.80.6.9402E.[CrossRef] Fornaro, G., A. Pauciullo, and F. Serafino (2009), Deformation monitoring over large areas with multipass differential SAR interferometry: A new approach based on the use of spatial differences, Int. J. Remote Sens., 30(6), 1455–1478.[CrossRef] Freed, A. M. (2007), Afterslip (and only afterslip) following the 2004 Parkfield, California, earthquake, Geophys. Res. Lett., 34, L06312, doi:10.1029/2006GL029155.[AGU] Galli, P., F. Galadini, and D. Pantosti (2008), Twenty years of paleoseismology in Italy, Earth. Sc. Rev., 88, 89–117.[CrossRef] Galli, P., et al. (2010), The 2009 central Italy earthquake seen through 0.5 Myr-long tectonic history of the of the L'Aquila faults system, Quat. Sci. Rev., 29, 3768–3789, doi:10.1016/j.quascirev.2010.08.018.[CrossRef] Galli, P. A., B. Giaccio, P. Messina, E. Peronace, and G. M. Zuppi (2011), Palaeoseismology of the L'Aquila faults (central Italy, 2009, Mw 6.3 earthquake): Implications for active fault linkage, Geophys. J. Int., 187, 1119–1134, doi:10.1111/j.1365-246X.2011.05233.x.[CrossRef] Gourmelen, N., F. Amelung, and R. Lanari (2010), Interferometric synthetic aperture radar-GPS integration: Interseismic strain accumulation across the Hunter Mountain fault in the eastern California shear zone, J. Geophys. Res., 115, B09408, doi:10.1029/2009JB007064.[AGU] Guerrieri, L., et al. (2010), InSAR data as a field guide for mapping minor earthquake surface ruptures: Ground displacements along the Paganica Fault during the 6 April 2009 L'Aquila earthquake, J. Geophys. Res., 115, B12331, doi:10.1029/2010JB007579.[AGU] Hansen, P. C. (1992), Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev., 34(4), 561–580.[CrossRef] Helmstetter, A., and B. E. Shaw (2009), Afterslip and aftershocks in the rate-and-state friction law, J. Geophys. Res., 114, B01308, doi:10.1029/2007JB005077.[AGU] Herrmann, R. B., L. Malagnini, and I. Munafò (2011), Regional moment tensors of the 2009 L'Aquila earthquake sequence, Bull. Seismol. Soc. Am., 101(3), 975–993, doi:10.1785/0120100184.[CrossRef] Hsu, Y.-J., N. Bechor, P. Segall, S.-B. Yu, L.-C. Kuo, and K.-F. Ma (2002), Rapid afterslip following the 1999 Chi-Chi, Taiwan earthquake, Geophys. Res. Lett., 29(16), 1754, doi:10.1029/2002GL014967.[AGU] Hsu, Y.-J., M. Simons, J.-P. Avouac, J. Galetzka, K. Sieh, M. Chlieh, D. Natawidjaja, L. Prawirodirdjo, and Y. Bock (2006), Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra, Science, 312, 1921–1926, doi:10.1126/science.1126960.[CrossRef] Johanson, I. A., and R. Bürgmann (2010), Coseismic and postseismic slip from the 2003 San Simeon earthquake and their effects on backthrust slip and the 2004 Parkfield earthquake, J. Geophys. Res., 115, B07411, doi:10.1029/2009JB006599.[AGU] Johanson, I. A., E. J. Fielding, F. Rolandone, and R. Bürgmann (2006), Coseismic and postseismic slip of the 2004 Parkfield earthquake from space-geodetic data, Bull. Seismol. Soc. Am., 96, 269–282, doi:10.1785/0120050818.[CrossRef] Lanari, R., P. Lundgren, M. Manzo, and F. Casu (2004), Satellite radar interferometry time series analysis of surface deformation for Los Angeles, California, Geophys. Res. Lett., 31, L23613, doi:10.1029/2004GL021294.[AGU] Lanari, R., et al. (2010), Surface displacements associated with the L'Aquila 2009 Mw 6.3 earthquake (central Italy): New evidence from SBAS-DInSAR time series analysis, Geophys. Res. Lett., 37, L20309, doi:10.1029/2010GL044780.[AGU] Langbein, J., J. R. Murray, and H. A. Snyder (2006), Coseismic and initial postseismic deformation from the 2004 Parkfield, California, earthquake, observed by Global Positioning System, electronic distance meter, creep-meters, and borehole strainmeters, Bull. Seismol. Soc. Am., 96, 304–320, doi:10.1785/0120050823.[CrossRef] Marone, C. J. (1998), Laboratory-derived friction laws and their application to seismic faulting, Annu. Rev. Earth Planet. Sci., 26, 643–696.[CrossRef] Marone, C. J., C. H. Scholtz, and R. Bilham (1991), On the mechanics of afterslip, J. Geophys. Res., 96, 8441–8452.[AGU] Mendoza, C., and S. H. Hartzell (1988), Aftershock properties and main shock faulting, Bull. Seismol. Soc. Am., 78(4), 1438–1449. Miyazaki, S., P. Segall, J. Fukuda, and T. Kato (2004), Space time distribution of afterslip following the 2003 Tokachi-oki earthquake: Implications for variations in fault zone frictional properties, Geophys. Res. Lett., 31, L06623, doi:10.1029/2003GL019410.[AGU] Moro, M., V. Bosi, F. Galadini, P. Galli, B. Giaccio, P. Messina, and A. Sposato (2002), Analisi paleosismologiche lungo la faglia del M. Marine (alta valle dell'Aterno): Risultati preliminari, Quaternario, 15, 267–278. Nishimura, T., and W. Thatcher (2003), Rheology of the lithosphere inferred from postseismic uplift following the 1959 Hebgen Lake earthquake, J. Geophys. Res., 108(B8), 2389, doi:10.1029/2002JB002191.[AGU] Okada, Y. (1985), Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 75, 1135–1154. Page, M. T., S. Custodio, R. J. Archuleta, and J. M. Carlson (2009), Constraining earthquake source inversions with GPS data: 1. Resolution-based removal of artifacts, J. Geophys. Res., 114, B01314, doi:10.1029/2007JB005449.[AGU] Perfettini, H., and J.-P. Avouac (2004), Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan, J. Geophys. Res., 109, B02304, doi:10.1029/2003JB002488.[AGU] Pino, N. A., and F. Di Luccio (2009), Source complexity of the 6 April 2009 L'Aquila (central Italy) earthquake and its strongest aftershock revealed by elementary seismological analysis, Geophys. Res. Lett., 36, L23305, doi:10.1029/2009GL041331.[AGU] Pondrelli, S., S. Salimbeni, A. Morelli, G. Ekström, M. Olivieri, and E. Boschi (2010), Seismic moment tensors of the April 2009, L'Aquila (central Italy), earthquake sequence, Geophys. J. Int., 180(1), 238–242, doi:10.1111/j.1365-246X.2009.04418.x.[CrossRef] Reale, D., D. O. Nitti, D. Peduto, R. Nutricato, F. Bovenga, and G. Fornaro (2011), Postseismic deformation monitoring with the COSMO/SKYMED constellation, IEEE Geosc. Remote Sens. Lett., 8(4), 696–700, doi:10.1109/LGRS.2010.2100364.[CrossRef] Riva, R. E. M., A. Borghi, A. Aoudia, R. Barzarghi, R. Sabadini, and G. F. Panza (2007), Viscoelastic relaxation and long-lasting afterslip following the 1997 Umbria-Marche (central Italy) earthquakes, Geophys. J. Int., 169, 534–546.[CrossRef] Roberts, G., and A. M. Michetti (2004), Spatial and temporal variations in growth rate along active normal fault systems: An example from The Lazio Abruzzo Apennines, central Italy, J. Struct. Geol., 26, 339–376, doi:10.1016/S0191-8141(03)00103-2.[CrossRef] Ryder, I., R. Bürgmann, and J. Sun (2010), Tandem afterslip on connected fault planes following the 2008 Nima-Gaize (Tibet) earthquake, J. Geophys. Res., 115, B03404, doi:10.1029/2009JB006423.[AGU] Rymer, M. J., et al. (2006), Surface fault slip associated with the 2004 Parkfield, California, earthquake, Bull. Seismol. Soc. Am., 96(4B), S11–S27, doi:10.1785/0120050830.[CrossRef] Savage, J. C., J. L. Svarc, and S. Yu (2005), Postseismic relaxation and transient creep, J. Geophys. Res., 110, B11402, doi:10.1029/2005JB003687.[AGU] Scholz, C. H. (2002), The Mechanics of Earthquakes and Faulting, 2nd ed., 496 pp., Cambidge Univ. Press, New York. Scognamiglio, L., E. Tinti, A. Michelini, D. Dreger, A. Cirella, M. Cocco, S. Mazza, and A. Piatanesi (2010), Fast determination of moment tensors and rupture history: Application to the April 6th 2009, L'Aquila earthquake, Seismol. Res. Lett., 81(6), 892–906, doi:10.1785/gssrl.81.6.892.[CrossRef] Stark, P. B., and R. L. Parker (1995), Bounded-variable least-squares—An algorithm and applications, Comput. Stat., 10(2), 129–141. Tertulliani, A., A. Rossi, L. Cucci, and M. Vecchi (2010), L'Aquila (central Italy) earthquake: The predecessors of the April 6, 2009 event, Seismol. Res. Lett, 80(6), 1008–1013, doi:10.1785/gssrl.80.6.1008.[CrossRef] Trasatti, E., C. Kyriakopoulos, and M. Chini (2011), Finite element inversion of DInSAR data from the Mw 6.3 L'Aquila earthquake, 2009 (Italy), Geophys. Res. Lett., 38, L08306, doi:10.1029/2011GL046714.[AGU] Tse, S. T., and J. R. Rice (1986), Crustal earthquake instability in relation to the depth variation of frictional slip properties, J. Geophys. Res., 91, 9452–9472.[AGU] Utsu, T. (2002), Statistical features of seismicity, in International Handbook of Earthquake and Engineering Seismology, Part A, edited by W. H. K. Lee et al., pp. 719–731, Academic, New York.[CrossRef] Walters, R. J., J. R. Elliott, N. D'Agostino, P. C. England, I. Hunstad, J. A. Jackson, B. Parsons, R. J. Phillips, and G. Roberts (2009), The 2009 L'Aquila earthquake (central Italy): A source mechanism and implications for seismic hazard, Geophys. Res. Lett., 36, L17312, doi:10.1029/2009GL039337.[AGU] Wessel, P., and W. H. F. Smith (1998), New improved version of the Generic Mapping Tools released, Eos Trans. AGU, 79, 579.[AGU] Wilkinson, M., et al. (2010), Partitioned postseismic deformation associated with the 2009 Mw 6.3 L'Aquila earthquake surface rupture measured using a terrestrial laser scanner, Geophys. Res. Lett., 37, L10309, doi:10.1029/2010GL043099.[AGU] Woessner, J., D. Schorlemmer, S. Wiemer, and P. M. Mai (2006), Spatial correlation of aftershock locations and on-fault main shock properties, J. Geophys. Res., 111, B08301, doi:10.1029/2005JB003961.[AGU] Working Group CPTI (2004), Catalogo Parametrico dei Terremoti Italiani, version 2004 (CPTI04), 320 pp., Ist. Naz. di Geofis. e Vulcanol., Bologna, Italy. [Available at http://emidius.mi.ingv.it/CPTI/.]en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorD'Agostino, N.en
dc.contributor.authorCheloni, D.en
dc.contributor.authorFornaro, G.en
dc.contributor.authorGiuliani, R.en
dc.contributor.authorReale, D.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIREA, CNR Napolien
dc.contributor.departmentDipartimento Protezione Civileen
dc.contributor.departmentIREA, CNR Napolien
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIREA, CNR-
crisitem.author.deptDipartimento Protezione Civile, Ufficio Rischio Sismico-
crisitem.author.deptIREA-CNR-
crisitem.author.orcid0000-0002-0444-6240-
crisitem.author.orcid0000-0002-0958-2129-
crisitem.author.orcid0000-0001-9906-0801-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
dagostino_etal_JGR2012.pdf14.63 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

59
checked on Feb 10, 2021

Page view(s)

218
checked on Mar 27, 2024

Download(s)

36
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric