Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7695
DC FieldValueLanguage
dc.contributor.authorallButtinelli, M.; Uniroma3 geology dept.en
dc.contributor.authorallDe Rita, D.; Uniroma3 geology dept.en
dc.contributor.authorallCremisini, C.; Centro ricerche ENEA Casacciaen
dc.contributor.authorallCimarelli, C.; Uniroma3 geology dept.en
dc.date.accessioned2012-01-31T12:26:09Zen
dc.date.available2012-01-31T12:26:09Zen
dc.date.issued2011-04-28en
dc.identifier.urihttp://hdl.handle.net/2122/7695en
dc.description.abstractWe describe the eruptive activity of the Pleistocene composite Baccano maar crater in the Sabatini Volcanic Complex (Central Italy) combining stratigraphy, grain size/componentry and rare earth element and Yttrium (REY) composition of its eruptive products with the stratigraphy and geothermal data derived from deep wells drilled on the Baccano structural high. The main lithological characteristics of the basal Baccano maar pyroclastic deposit, composed of more than 60% wt of non-thermometamorphosed lithic clasts from the sedimentary basement, show that the first eruption was magmatic-hydrothermal in nature. The lithology of the sedimentary lithic clasts indicates that the fragmentation level was at a depth of −1,000 to −1,200 m, with fragment depth verified by deep well stratigraphy. The 15% wt juvenile non-vesicular glass components suggest that magma played a minor role in powering the eruption. Assuming that the high-salinity hot hydrothermal fluids (365<T<410°C and P∼25 MPa), hosted in the highly permeable and confined aquifer below the Baccano maar are representative of those at the time of the eruption, we propose that hydrofracturing would have triggered the eruption caused by overpressure at the top of the geothermal aquifer. REY analysis performed on pyroclastic fragments and basement rocks suggest that partial dissolution of the deeper limestones (>−1,400 m) by the aggressive hydrothermal fluids enriched in acid components (HF, HCl, and H2SO4) may have contributed to increased CO2 partial pressure that helped to drive the hydrofracturing. This could have caused rapid vapour separation and pressure drop, allowing the almost simultaneous breaking of the aquifer cover and brecciation of the calcareous units down to −1,000 to −1,200 m depth. The relative abundance of calcareous lithics in the basal part of the first Baccano eruptive unit, representing about the upper 200 m of stratigraphy below the top of the Baccano structural high, reveals the descent of the piezometric surface during the eruption. Combining deep well information and maar product stratigraphy, using also REY data from maar pyroclastic fragments and the basement rocks we draw an interpretative model for the Baccano maar forming eruption, concluding that a) magmatic-hydrothermal eruptions may originate deeper than previously thought, and b) hydrothermal fluids circulating in limestone aquifers may play an important role in triggering such eruptions.en
dc.language.isoEnglishen
dc.publisher.nameSpringer-Verlagen
dc.relation.ispartofBulletin of Volcanologyen
dc.relation.ispartofseries7/73(2011)en
dc.subjectHydrothermal eruptionsen
dc.subjectHydromagmatismen
dc.subjectExplosion depthen
dc.subjectREYen
dc.subjectHydrothermal fluidsen
dc.subjectBaccano maaren
dc.titleDeep explosive focal depths during maar forming magmatic-hydrothermal eruption: Baccano Crater, Central Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber899-915en
dc.subject.INGV05. General::05.02. Data dissemination::05.02.03. Volcanic eruptionsen
dc.identifier.doi10.1007/s00445-011-0466-zen
dc.relation.referencesAnders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214 Baldi P, Cameli GM, Locardi E, Mouton J, Scandellari F (1975) Geology and geophysics of the Cesano geothermal field. U. Symp. Geotherm. Energy, San Francisco, USA, 2: 871–881 Baldi P, Buonasorte G, Cameli GM, Cigni U, Funiciello R, Parotto M, Scandiffio G, Toneatti R (1982a) Exploration methodology, deep drilling and geothermal model of the Cesano field (Latium— Italy). In: First Turkish-Italian Seminar on Geothermal Energy II: 51–128 Baldi P, Buonasorte G, Ceccarelli A, Ridolfi A, D’Offizi S, D’Amore F, Grassi S, Squarci PL, Boni C, Bono P, Di Filippo M, Martelli MC, Lombardi MC, Toro B (1982b) Contributo alla conoscenza delle potenzialità geotermiche della toscana e del Lazio. PFE-RF 15. Consiglio Nazionale delle Ricerche Baldi P, Bertini G, Ceccarelli A (1993) Geothermal fields of Central Italy. Resour Geol Spec Issue 16:69–81 Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman Iron-formations, Transvaal Supergroup, South Africa. Precambrian Res 79:37–55 Belkin CG, De Vivo B, Tecce F (1988) Hydrothermal phlogopite and anhydrite from the 518 SH2 well, Sabatini volcanic district, Latium, Italy: fluid inclusions and mineral chemistry. Am Mineral 73:775–793 Browne PRL, Lawless JV (2001) Characteristics of hydrothermal eruptions, with examples from New Zealand and elsewhere. Earth Sci Rev 52:299–331 Calamai A, Cataldi R, Locardi E, Praturlon A (1976) Distribuzione delle anomalie geotermiche nella fascia preappenninica toscolaziale. In: Simposio International sobre energia geotermica en America Latina I.I.L.A.—Ciudad de Guatemala, pp 189–229 Cas RAF, Wright JV (1987) Volcanic successions: modern and ancient. Allen and Unwin, London Cavarretta G, Tecce F (1987) Contact metasomatic and hydrothermal minerals in the SH2 deep well, Sabatini volcanic district, Latium, Italy. Geothermics 16(2):127–145 Cavarretta G, Mottana A, Tecce F (1981) Cesanite, a sulphate isotypic to apatite, from the Cesano geothermal field. Mineral Mag 44:269–273 Cioni R, Laurenzi MA, Sbrana A, Villa IM (1993) 40Ar–39Ar chronostratigraphy of the initial activity in the Sabatini Volcanic Complex (Italy). Boll Soc Geol Ital 112:251–263 Cipollari P, Cosentino D (1995) Il sistema Tirreno-Appennino: segmentazione litosferica e propagazione del fronte compressivo. Studi Geol Camerti 2:37–45 Conticelli S, Francalanci L, Manetti P, Cioni R, Sbrana A (1997) Petrology and geochemistry of the ultrapotassic rocks from the Sabatini volcanic district, central Italy: the role of evolutionary processes in the genesis of variably enriched alkaline magmas. J Volcanol Geotherm Res 75:107–136 de Rita D, Sposato A (1986) Correlazione tra eventi esplosivi e assetto strutturale del substrato sedimentario nel complesso vulcanico sabatino. Mem Soc Geol Ital 35:727–733 de Rita D, Zanetti G (1986) I centri esplosivi di Baccano e Stracciacappe: analogie e differenze della modellistica esplosiva in funzione del grado di interazione acqua/magma. Mem Soc Geol Ital 35:689–697 de Rita D, Funicello R, Rossi U, Sposato A (1983) Structure and evolution of Sacrofano-Baccano caldera. J Volcanol Geotherm Res 17:219–238 de Rita D, Funiciello R, Corda L, Sposato A, Rossi U (1993) Volcanic units. In: Di Filippo M (ed) Sabatini volcanic complex. CNR Quad Ric Sci 11:33–79 de Rita D, Di Filippo M, Rosa C (1996) Structural evolution of the Bracciano volcano-tectonic depression, Sabatini Volcanic District, Italy. In: McGuire WC, Jones AP, Neuberg J (eds) Volcano instability on the Earth and other planets. Geol Soc London Spec Pub 110:225–238 Di Filippo M (ed) (1993) Sabatini volcanic complex. CNR Quad Ric Sci Progetto Finalizzato “Geodinamica”—monografie finali 114: 109 pp Druitt TH (1992) Emplacement of the 18 May 1980 lateral blast deposit ENE of Mount St. Helens, Washington. Bull Volcanol 54:554–572 ENEL-VDAG-URM (1991) Aggiornamento delle carte geologiche di superficie e profonde del Lazio settentrionale, tav. 1, 2 internal report Fontaine FJH, Rabinowincz M, Boulègue J, Jouniaux L (2002) Constrains on hydrothermal processes on basaltic edifices: inferences on the conditions leading to hydrovolcanic eruptions at Piton de la Fournaise Rèunion Island, Indian Ocean. Earth Planet Sci Lett 200:1–14 Germanovich LN, Lowell RP (1995) The mechanism of phreatic eruptions. J Geophys Res 100:8417–8434 Heiken G, Wohletz K, Eichelberger J (1988) Fracture fillings and intrusive pyroclasts, Inyo Domes, California. J Geophys Res 93:4335–4350 Henley RW, Ellis AJ (1983) Geothermal systems ancient and modem: a geochemical review. Earth Sci Rev 19:1–50 Karner DB, Marra F, Renne PR (2001) The history of the Monti Sabatini and Alban Hills volcanoes: groundwork for assessing volcanic–tectonic hazards for Rome. J Volcanol Geotherm Res 107:185–219 Keenan JH, Keyes FG, Hill PG, Moore JG (1978) Steam tables. Thermodynamic properties of water including vapor, liquid, and solid phases (International System of Units-S.I.). Wiley, New York, 162 pp Kolonin GR, Shironosova GP (2002) Thermodynamic model for REE complexation in the 592 course of interaction between REEfluorite and hydrothermal fluid. Geochem Int 40:103–112 Leybourne MI, Goodfellow WD, Boyle DR, Hall GM (2000) Rapid development of negative Ce anomalies in surface waters and contrasting REE patterns in groundwaters associated with Zn–Pb massive sulphide deposits. Appl Geochem 15:695–723 Lorenz V (1987) Phreatomagmatism and its relevance. Chem Geol 62:149–156 Lorenz V, Kurszlaukis S (2006) Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar–diatreme volcanoes. J Volcanol Geotherm Res 159:4–32 Mastin LG (1991) The roles of magma and ground water in the phreatic eruptions at Inyo Craters, Long Valley Caldera California. Bull Volcanol 53:579–596 Mastin LG (2007) Generation of fine hydromagmatic ash by growth and disintegration of glassy rinds. J Geophys Res 112:1–17 Meloni S, Genova N, Oddone M, Oliveri F, Vannucci R (1987) Rareearth elements abundance and distribution in pelagic sediments by instrumental neutron activation analysis. J Radioanal Nucl Chem 112(2):507–514 Möller P (1998) Rare earth elements and yttrium fractionation caused by fluid migration. In: Novak M, Rosenbaum J (eds) Challenges to chemical geology. Czech Geol Surv 9–32 Möller P (2002) The distribution of rare earth elements and yttrium in water–rock interactions: field observations and experiments. In: Stober I, Bucher K (eds) Water–rock interaction. Kluwer Academic Publishers, pp 97–123 Möller P, Bau M, Dulski P, Lüders V (1998) REE and yttrium fractionation in fluorite and their bearing on fluorite formation. Proceed Quadr IAGOD Symp 9:575–592 Möller P, Dulski P, Morteani G (2004a) Partitioning of rare earth elements, yttrium, and some major elements among source rocks, liquid and steam of Larderello–Travale Geothermal Field, Tuscany (Central Italy). Geochim Cosmochim Acta 67:171–183 Möller P, Dulski P, Savascin Y, Conrad M (2004b) Rare earth elements, yttrium and Pb isotope ratios in thermal spring and well waters of West Anatolia, Turkey: a hydrochemical study of their origin. Chem Geol 206(1–2):97–118 Parekh PP, Möller P, Dulski P, Bausch WM (1977) Distribution of trace elements between carbonate and non-carbonate phases of limestone. Earth Planet Sci Lett 34(1):39–50 Peccerillo A (2005) Plio-quaternary volcanism in Italy. Petrology, geochemistry, geodynamics. Springer, Heidelberg, 365 pp Schwinn G, Markl G (2005) REE systematics in hydrothermal fluorite. Chem Geol 216(653):225–248 Self S, Wright (1983) Large wave forms from the Fish Canyon Tuff, Colorado. Geology 11(8):443–446 Sottili G, Taddeucci J, Palladino DM, Gaeta M, Scarlato P, Ventura G (2009) The sub-surface dynamics and eruptive styles of maars in the Colli Albani Volcanic District, central Italy. J Volcanol Geotherm Res 180:189–202 Taddeucci A, Voltaggio M (1988) TH-230 dating of a fluorite bearing carbonate layer in the Baccano pyroclastic flow (Sabatini volcanoes, central Italy). Rend Soc Ital Mineral Petrol 43:1283–1289 Taylor SR,McLennan SM(1985) The Continental Crust; Its composition and evolution; an examination of the geochemical record preserved in sedimentary rocks. Blackwell, Oxford, 312 pp Tecce F, Frezzotti M, Cavarretta G (2000) Evidence for sulphate-rich melts in xenoliths from the Sabatini volcanic district (Roman Comagmatic Province, Italy): Raman and microthermometric studies of fluid and melt inclusions. Eos Trans AGU 81 (48), Fall Meet Suppl Abstract V51B-03 Valentine GA, Buesch DC, Fisher RV (1989) Basal layered deposits of the Peach Springs Tuff, northwest Arizona, USA. Bull Volcanol 51:395–414 Villa IM (1993) Geochronology. In: Di Filippo M (ed) Sabatini Volcanic Complex CNR Quad Ric Sci Progetto Finalizzato “Geodinamica”—monografie finali 114: 109 pp Washington HS (1906) The Roman Comagmatic Region 57. Carnegie, Washington, pp 1–199 Wohletz KH (1983) Mechanisms of hydrovolcanic pyroclast formation: grain-size, scanning electron microscopy, and experimental studies. J Volcanol Geotherm Res 17:31–63 Wohletz KH (1986) Explosive magma–water interactions: thermodynamics, explosion mechanism and field studies. Bull Volcanol 48:245–264 Wohletz KH (2002) Water/magma interaction: some theory and experiments on peperite formation. J Volcanol Geotherm Res 114:19–35 Yamamoto T, Nakamura Y, Glicken H (1999) Pyroclastic density current from the 1888 phreatic eruption of Bandai volcano, NE Japan. J Volcanol Geotherm Res 90:191–207 Zimanowski B, FröhlichG, LorenzV(1991)Quantitative experiments on phreatomagmatic explosions. J Volcanol Geotherm Res 48:341–358en
dc.description.obiettivoSpecifico3.5. Geologia e storia dei vulcani ed evoluzione dei magmien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorButtinelli, M.en
dc.contributor.authorDe Rita, D.en
dc.contributor.authorCremisini, C.en
dc.contributor.authorCimarelli, C.en
dc.contributor.departmentUniroma3 geology dept.en
dc.contributor.departmentUniroma3 geology dept.en
dc.contributor.departmentCentro ricerche ENEA Casacciaen
dc.contributor.departmentUniroma3 geology dept.en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextreserved-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptUniversità degli Studi di Roma Tre-
crisitem.author.deptCentro ricerche ENEA Casaccia-
crisitem.author.orcid0000-0002-3362-4624-
crisitem.author.orcid0000-0002-5707-5930-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent05. General-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Buttinelli et al., 2011 - Baccano Maar forming deep hydrothermal eruption.pdf3.93 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

11
checked on Feb 10, 2021

Page view(s) 20

353
checked on Apr 17, 2024

Download(s)

32
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric