Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7644
DC FieldValueLanguage
dc.contributor.authorallDe Paola, N.; Durham University,en
dc.contributor.authorallHirose, T.; Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 200 Monobe-otsu, Kochi 783-8502, Japanen
dc.contributor.authorallMitchell, T.; Experimental Geophysics Laboratory, Institute for Geology, Mineralogy, and Geophysics, Ruhr-University Bochum, D-44780 Bochum, Germanyen
dc.contributor.authorallDi Toro, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallViti, C.; Dipartimento di Geoscienze, Università degli Studi di Padova, Via Giotto 1, Padua 35137, Italyen
dc.contributor.authorallShimamoto, T.; Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, 1-3-1, Kagami-yama, Higashi-Hiroshima 739-8526, Japanen
dc.date.accessioned2012-01-27T13:53:27Zen
dc.date.available2012-01-27T13:53:27Zen
dc.date.issued2011en
dc.identifier.urihttp://hdl.handle.net/2122/7644en
dc.description.abstractExperiments performed on dolomite or Mg-calcite gouges at seismic slip rates (v > 1 m/s) and displacements (d > 1 m) show that the frictional coeffi cient μ decays exponentially from peak values (mp ≈ 0.8, in the Byerlee’s range), to extremely low steady-state values (μss ≈ 0.1), attained over a weakening distance Dw. Microstructural observations show that discontinuous patches of nanoparticles of dolomite and its decomposition products (periclase and lime or portlandite) were produced in the slip zone during the transient stage (d < Dw). These observations, integrated with CO2 emissions data recorded during the experiments, suggest that particle interaction in the slip zone produces fl ash temperatures that are large enough to activate chemical and physical processes, e.g., decarbonation reactions (T = 550 C). During steady state (d ≥ Dw), shear strength is very low and not dependent upon normal stresses, suggesting that pressurized fl uids (CO2) may have been temporarily trapped within the slip zone. At this stage a continuous layer of nanoparticles is developed in the slip zone. For d >> Dw, a slight but abrupt increase in shear strength is observed and interpreted as due to fl uids escaping the slip zone. At this stage, dynamic weakening appears to be controlled by velocity dependent properties of nanoparticles developed in the slip zone. Experimentally derived seismic source parameter Wb (i.e., breakdown work, the energy that controls the dynamics of a propagating fracture) (1) matches Wb values obtained from seismological data of the A.D. 1997 M6 Colfi orito (Italy) earthquakes, which nucleated in the same type of rocks tested in this study, and (2) suggests similar earthquake-scaling relationships, as inferred from existing seismological data sets. We conclude that dynamic weakening of experimental faults is controlled by multiple slip weakening mechanisms, which are activated or inhibited by physicochemical reactions in the slip zone.en
dc.language.isoEnglishen
dc.relation.ispartofGeologyen
dc.relation.ispartofseries/39 (2011)en
dc.subjectfrcitionen
dc.titleFault lubrication and earthquake propagation in thermally unstable rocksen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber35-38en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismologyen
dc.identifier.doi10.1130/G31398.1en
dc.description.obiettivoSpecifico3.1. Fisica dei terremotien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorDe Paola, N.en
dc.contributor.authorHirose, T.en
dc.contributor.authorMitchell, T.en
dc.contributor.authorDi Toro, G.en
dc.contributor.authorViti, C.en
dc.contributor.authorShimamoto, T.en
dc.contributor.departmentDurham University,en
dc.contributor.departmentKochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 200 Monobe-otsu, Kochi 783-8502, Japanen
dc.contributor.departmentExperimental Geophysics Laboratory, Institute for Geology, Mineralogy, and Geophysics, Ruhr-University Bochum, D-44780 Bochum, Germanyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDipartimento di Geoscienze, Università degli Studi di Padova, Via Giotto 1, Padua 35137, Italyen
dc.contributor.departmentDepartment of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, 1-3-1, Kagami-yama, Higashi-Hiroshima 739-8526, Japanen
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypearticle-
item.grantfulltextrestricted-
crisitem.author.deptUniv. Perugia, Italy-
crisitem.author.deptKochi Institute for Core Sample Research, Japan Agency Marine Earth Science and Technology, Kochi, Japan.-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptDipartimento di Scienze della Terra Università degli Studi di Siena,-
crisitem.author.deptDepartment of Earth and Planetary Systems Science, University of Hiroshima, Hiroshima, Japan.-
crisitem.author.orcid0000-0002-5397-3346-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
35.full.pdffull monty680 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

116
checked on Feb 10, 2021

Page view(s)

114
checked on Jul 3, 2022

Download(s)

22
checked on Jul 3, 2022

Google ScholarTM

Check

Altmetric