Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7610
DC FieldValueLanguage
dc.contributor.authorallCifelli, F.; Università degli Studi Roma3en
dc.contributor.authorallMinelli, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallRossetti, F.; Università degli Studi Roma3en
dc.contributor.authorallUrru, G.; Università degli Studi Roma3en
dc.contributor.authorallMattei, M.; Università degli Studi Roma3en
dc.date.accessioned2012-01-27T09:05:00Zen
dc.date.available2012-01-27T09:05:00Zen
dc.date.issued2012en
dc.identifier.urihttp://hdl.handle.net/2122/7610en
dc.description.abstractAnisotropy of magnetic susceptibility (AMS) analysis has been carried out in the thermometamorphic aureole surrounding the Late Miocene Monte Capanne pluton (Elba Island, Central Italy). The identification and separation of the main carriers of the magnetic susceptibility by low-temperature and high-field AMS measurements demonstrate that a correct knowledge of the magnetic fabric is needed in order to use AMS for tectonic interpretations. Magnetic fabric data, combined with structural data from the aureole, and their comparison with data from the pluton itself, were used to constraint the mode of pluton emplacement. Results document an intimate linkage between the magmatic flow pattern and the syn-metamorphic fabrics acquired during pluton emplacement in the host rocks. The magnetic/structural fabric in the aureole rocks is dominated by flattening deformation and no systematic relationship with any regional tectonic feature is observed. These results suggest that local processes induced by magma ascent in the upper crust might have played a primary role in space generation for pluton emplacement in the Tuscan Magmatic Province, suggesting a revaluation of the modes of pluton emplacement during the post-orogenic evolution of the northern Apennine system as a whole.en
dc.language.isoEnglishen
dc.publisher.nameSpringer Verlag New York Incen
dc.relation.ispartofInternational journal of earth sciencesen
dc.relation.ispartofseries3/101(2012)en
dc.subjectAnisotropy of magnetic cusceptibilityen
dc.subjectelba islanden
dc.subjectgraniteen
dc.subjectfinite strainen
dc.titleThe emplacement of the Late Miocene Monte Capanne intrusion (Elba Island, Central Italy): constraints from magnetic fabric analysesen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber787-802en
dc.subject.INGV04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneousen
dc.identifier.doi10.1007/s00531-011-0701-zen
dc.relation.referencesArchanjo CJ, Hollanda MH, Rodrigues S, Neves B, Armstrong R (2008) Fabrics of pre- and syntectonic granite plutons and chronology shear zones in the Eastern Borborema Province, NE Brazil. Geology 30:310–326 Aubourg C, Giordano G, Mattei M, Speranza F (2002) Magma flow in rhyolitic dikes inferred from magnetic fabric analysis (Ponza Island, W Italy). Phys Chem Earth 27:1263–1272 Barberi F, Innocenti F (1965) Le rocce cornubianitico-calcaree dell’anello termometamorfico del M. Capanne (Isola d’Elba). Atti della Societa` Toscana di Scienze Naturali A 72:3–90 Barberi F, Innocenti F (1966) I fenomeni di metamorfismo termico nelle rocce peridotitico-serpentinose dell’aureola del M.te Capanne (Isola d’Elba). Periodico di Mineralogia 35:735–760 Barberi F, Giglia G, Innocenti F, Marinelli G, Raggi G, Ricci CA, Squarci P, Taffi L, Trevisan L (1967) Carta geologica dell’isola d’Elba scala 1:25000. C.N.R, Roma Bergmuller F, Barlocher C, Geyer B, Grieder M, Heller F, Zweifel P (1994) A torque magnetometer for measurements of the high-field anisotropy of rocks and crystals. Meas Sci Technol 5:1466–1470 Boccaletti M, Papini P (1989) Ricerche meso e microstrutturali sui corpi ignei neogenici della Toscana. 2: L’intrusione del M. Capanne (Isola d’Elba). Bollettino della Societa` Geologica Italiana 108:699–710 Boccaletti M, Conedera C, Dainelli P, Gocev P (1982) The recent (Miocene-Quaternary) regmatic system of the Western Mediterranean region. J Petrol Geol 5:31–49 Borradaile G (1988) Magnetic susceptibility, petrofabrics and strain. Tectonophysics 156:1–20 Borradaile GJ, Henry B (1997) Tectonic application of magnetic susceptibility and its anisotropy. Earth Sci Rev 42:49–93 Borradaile GJ, Tarling DH (1981) The influence of deformation mechanism on magnetic fabrics in weakly deformed rocks. Tectonophysics 77:151–178 Bortolotti V, Fazzuoli M, Pandeli E, Principi G, Babbini A, Corti S (2001) Geology of central and eastern Elba Island, Italy. Ofioliti 26:97–150 Bouchez JL (1997) Granite is never isotropic: an introduction to AMS studies of granitic rocks. In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer, Dordrecht Bouchez JL, Diot H (1990) Nested granites in question: contrasted emplacement kinematics of independent magmas in the Zaer pluton, Morocco. Geology 18:966–969 Bouchez JL, Gleizes G, Djouadi T, Rochette P (1990) Microstructure and magnetic susceptibility applied to emplacement kinematics of granites: the example of the Foix pluton (French Pyrenees). Tectonophysics 184:157–171 Bouillin JP (1983) Exemples de deformations locales liées a la mise en place de granitoıdes alpins dans des conditions distensives: l’ıle d’Elbe (Italie) et le Cap Bougaroun (Alge´rie). Rev Geogr Phys Geol Dyn 24:101–116 Bouillin JP, Bouchez JL, Lespinasse P, Pecher A (1993) Granite emplacement in an extensional setting: an AMS study of the magmatic structures of Monte Capanne (Elba, Italy). Earth Planet Sci Lett 118:263–279 Cifelli F, Mattei M, Hirt AM, Gunther A (2004) The origin of tectonic fabrics in ‘‘undeformed’’ clays: The early stages of deformation in extensional sedimentary basins. Geophys Res Lett 31:L09604. doi:10.01029/02004GL019609 Cifelli F, Mattei M, Chadima M, Hirt AM, Hansen A (2005) The origin of the tectonic lineation in extensional basins: Combined neutron texture and magnetic analysis on ‘‘undeformed’’ clays. Earth Planet Sci Lett 235:62–78 Cogne´ JP, Perroud H (1988) Anisotropy of magnetic susceptibility as a strain gauge in the Flamanville granite, NW France. Phys Earth Planet Inter 51(4):264–270 Daniel JM, Jolivet L (1995) Detachment fault and pluton emplacement: Elba Island (Tyrrhenian Sea). Bulletin de la Societe Geologique de France 166:341–354 Dini A, Innocenti F, Rocchi S, Tonarini S, Westerman DS (2002) The magmatic evolution of the late Miocene laccolith-pluton-dyke granitic complex of Elba Island, Italy. GeolMagazine 139:257–279 Dini A, Gianelli G, Puxeddu M, Ruggieri C (2005) Origin and evolution of Pliocene-Pleistocene granites from the Larderello geothermal field (Tuscan Magmatic Province, Italy). Lithos 81:1–31 Duranti S, Palmeri R, Pertusati PC, Ricci CA (1992) Geological evolution and metamorphic petrology of the sequences of eastern Elba (Complex II). Acta Vulcanol 2:213–229 Ellwood BB, Whitney JA (1980) Magnetic fabric of the Elberton Granite, notheeast Georgia. J Geophys Res 85:1481–1486 Farina F, Dini A, Innocenti F, Rocchi S, Westerman DS (2010) Rapid incremental assembly of the Monte Capanne pluton (Elba Island, Tuscany) by downward stacking of magma sheets. Geol Soc Am Bull 122(9/10):1463–1479 Goldstein AG (1980) Magnetic susceptibility anisotropy of mylonites from the Lake Char mylonite zone, southeastern New England. Tectonophysics 66:197–211 Goldstein AG (1988) Magnetic susceptibility anisotropy of mylonites from the Brevard zone, North Carolina, USA. Phys Earth Planet Inter 51:290–300 Graham JW (1954) Magnetic susceptibility anisotropy, an unexploited petrofabric element. Geol Soc Am Bull 65:1257–1258 Guillet P, Bouchez JL, Wagner JJ (1983) Anisotropy of magnetic susceptibility and magmatic structures in the Guérande granite massif (France). Tectonics 2:419–429 Heller F (1973) Magnetic anisotropy of granitic rocks of the Bergell massif (Switzerland). Earth Planet Sci Lett 20:180–188 Hirt AM, Gehring A (1991) Thermal alteration of the magnetic mineralogy in ferruginous rocks. J Geophys Res 96:9947–9954 Hounslow MW (1985) Magnetic fabric arising from paramagnetic phyllosilicates minerals in mudrocks. J Geol Soc London 142:995–1006 Housen BA, van der Pluijm BA, Essene EJ (1995) Plastic behavior of magnetite and high strains obtained from magnetic fabrics in the Parry Sound shear zone, Ontario, Grenville Province. J Struct Geol 17:265–278 Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys Surv 5:37–82 Hrouda F, Janak F (1976) The changes in shape of the magnetic susceptibility ellipsoid during progressive metamorphism and deformation. Tectonophysics 34:135–148 Hrouda F, Jelı´nek V (1990) Resolution of ferromagnetic and paramagnetic anisotropies, using combined low-field and highfield measurements. Geophys J Int 103:75–84 Hrouda F, Jelı´nek V, Zapletal K (1997) Refined technique for susceptibility resolution into ferromagnetic and paramagnetic components based on susceptibility temperature-variation measurement. Geophys J Int 129:715–719 Ihmle´ PF, Hirt AM, Lowrie W, Dietrich D (1989) Inverse magnetic fabric in deformed limestones of the Morcles nappe, Switzerland. Geophys Res Lett 16:1383–1386 Innocenti F, SerriG, Ferrara G,Manetti P, Tonarini S (1992) Genesis and classification of the rocks of the Tuscan Magmatic Province: thirty years after the Marinelli’s model. Acta Vulcanol 2:247–265 Jelinek V (1977) The statistical theory of measuring anisotropy of magnetic susceptibility of rocks and its application. Geofyzika Brno, Brno Jelıinek V (1981) Characterization of the magnetic fabric of rocks. Tectonophysics 79:63–67 Jelınek V, Pokorny´ J (1997) Some new concepts in technology of transformer bridges for measuring susceptibility anisotropy of rocks. Phys Chem Earth 22:179–181 Jolivet L, Faccenna C, Goffe` B, Mattei M, Rossetti F, Brunet C, Storti F, Funiciello R, Cadet JP, d’Agostino N, Parra T (1998) Midcrustal shear zone in postorogenic extension: example from the northern Tyrrhenian Sea. J Geophys Research 103:12123– 12160 Keller JVA, Pialli G (1990) Tectonics of the island of Elba: a reappraisal. Bollettino della Societa` Geologica Italiana 109:413–425 King RF (1966) The magnetic fabric in some Irish granites. Geol J 5:43–66 Kissel C, Barrier E, Laj C, Lee TQ (1986) Magnetic fabric in ‘‘undeformed’’ marine clays from compressional zones. Tectonics 5:769–781 Luneburg CM, Lampert SA, Lebit HD, Hirt AM, Casey M, Lowrie W (1999) Magnetic anisotropy, rock fabrics and finite strain in deformed sediments of SW Sardinia (Italy). Tectonophysics 307:51–74 Malinverno A, Ryan WBF (1986) Extension in Tyrrhenian sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 5:227–254 Mamtani MA, Greiling RO (2005) Granite emplacement and its relation with regional formation in the Aravalli Mountain Belt (India)—inferences from magnetic fabric. J Struct Geol 27:2008–2029 Marinelli G (1959) Le intrusioni terziarie dell’Isola d’Elba. Atti Soc Tosc Sci Nat 66:50–253 Martin Hernandez F, Hirt AM (2001) Separation of ferrimagnetic and paramagnetic anisotropies using a high-field torsion magnetometer. Tectonophysics 337:209–221 Mattei M, Sagnotti L, Faccenna C, Funiciello R (1997) Magnetic fabric of weakly deformed clay-rich sediments in the Italian peninsula: relationships with compressional and extensional tectonics. Tectonophysics 271:107–122 Pare´s JM, van der Pluijm BA (2002) Phyllosilicate fabric characterization by low-temperature anisotropy of magnetic susceptibility (LT AMS). Geophys Res Lett 29:2215 Pare´s JM, van der Pluijm BA, Dinare`s-Turell J (1999) Evolution of magnetic fabrics during incipient deformation of mudrocks (Pyrenees, northern Spain). Tectonophysics 307:1–14 Patacca E, Scandone P (1989) Post-Tortonian mountain building in the Apennines. The role of the passive sinking of a relic lithospheric slab. In: Boriani A, Bonafede M, Piccardo GB, Vai GB (eds) The lithosphere in Italy, vol 80. Accademia dei Lincei, Roma, pp 157–176 Pertusati PC, Raggi G, Ricci CA, Duranti S, Palmeri R (1993) Evoluzione post-collisionale dell’Elba centro-orientale. Memorie della Societa` Geologica Italiana 49:297–312 Poli G (1992) Geochemistry of Tuscan Archipelago granitoids, Central Italy: the role of hybridization processes in their genesis. J Geol 100:41–56 Raposo MIB, Gastal PMP (2009) Emplacement mechanism of the main granite pluton of the Lavras do Sul intrusive complex, South Brazil, determined by magnetic anisotropies. Tectonophysics 466:18–31 Richter C, van der Pluijm BA (1994) Separation of paramagnetic and ferrimagnetic susceptibilities using low-temperature magnetic susceptibilities and comparison with high field methods. Phys Earth Planet Int 82:113–123 Rocchi S, Westerman DS, Dini A, Innocenti F, Tonarini S (2002) Two-stage growth of laccoliths at Elba Island, Italy. Geology 30(11):983–986 Rocchi S, Westerman DS, Dini A, Farina F (2010) Intrusive sheets and sheeted intrusions at Elba Island, Italy. Geosphere 6(3):225–236 Rochette P, Fillion G, Mollard P, Vergne R (1983) Rock magnetism analysis of the magnetic-anisotropy in rocks using a cryogenic magnetometer. Comptes Rendus Acad Sci 296:557–559 Rochette P, Jackson M, Aubourg C (1992) Rock magnetism and interpretation of anisotropy of magnetic susceptibility. Rev Geophys 30:209–226 Rossetti R, Tecce F, Billi A, Brilli M (2007) Patterns of fluid flow in the contact aureole of the Late Miocene Monte Capanne pluton (Elba Island, Italy): the role of structures and rheology. Contrib Mineral Petrol 153:743–760 Serri GF, Innocenti F, Manetti P (1993) Geochemical and petrological evidence of the subduction of delaminated Adriatic continental litosphere in the genesis of of the Neogene-Quaternary magmatism of Central Italy. Tectonophysics 223:117–147 Siegesmund S, Becker JK (2000) Emplacement of the Ardara pluton (Ireland): new constraints from magnetic fabrics, rock fabrics and age dating. Int J Earth Sci 89:307–327 Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman & Hall, London Trevisan L (1950) L’Elba orientale e la sua tettonica di scivolamento per gravita`. Mem Ist Geol Univ 16:5–39 Van der Voo R, Klootwijk CT (1972) Paleomagnetic reconnaissance study of the flamanville granite with a special reference to the anisotropy of its susceptibility. Geol Mijnbouw 51:609–617en
dc.description.obiettivoSpecifico3.3. Geodinamica e struttura dell'interno della Terraen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.relation.issn1437-3254en
dc.relation.eissn1437-3262en
dc.contributor.authorCifelli, F.en
dc.contributor.authorMinelli, L.en
dc.contributor.authorRossetti, F.en
dc.contributor.authorUrru, G.en
dc.contributor.authorMattei, M.en
dc.contributor.departmentUniversità degli Studi Roma3en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentUniversità degli Studi Roma3en
dc.contributor.departmentUniversità degli Studi Roma3en
dc.contributor.departmentUniversità degli Studi Roma3en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità degli studi di Roma TRE-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptUniversità Roma Tre-
crisitem.author.deptUniversità degli Studi Roma3-
crisitem.author.deptUniversità degli studi di Roma TRE-
crisitem.author.orcid0000-0002-9395-3905-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Cifelli et al., 2011.pdfmain article1.38 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

9
checked on Feb 10, 2021

Page view(s) 5

476
checked on Apr 20, 2024

Download(s)

35
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric