Please use this identifier to cite or link to this item:
Authors: Matthews, N. E.* 
Smith, V. C.* 
Costa, A.* 
Durant, A. J.* 
Pyle, D. M.* 
Pearce, N. J. G.* 
Title: Ultra-distal tephra deposits from super-eruptions: Examples from Toba, Indonesia and Taupo Volcanic Zone, New Zealand
Issue Date: 2012
Series/Report no.: /258(2012)
DOI: 10.1016/j.quaint.2011.07.010
Keywords: Toba eruption
Subject Classification04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous 
Abstract: Voluminous rhyolitic eruptions from Toba, Indonesia, and Taupo Volcanic Zone (TVZ), New Zealand have dispersed volcanic ash over vast areas in the late Quaternary. The w74 ka Youngest Toba Tuff (YTT) eruption deposited ash over the Bay of Bengal and the Indian subcontinent to the west. The w340 ka Whakamaru eruption (TVZ) deposited the widespread Rangitawa Tephra, dominantly to the southeast (in addition to occurrences northwest of vent), extending across the landmass of New Zealand, and the South Pacific Ocean and Tasman Sea with distal terrestrial exposures on the Chatham Islands. These super-eruptions involved w2500 km3 and w1500 km3 of magma (dense-rock equivalent; DRE), respectively. Ultra-distal terrestrial exposures of YTT at two localities in India, Middle Son Valley, Madhya Pradesh, and Jurreru River Valley, Andhra Pradesh, at distances of >2000 km from the source caldera, show a basal ‘primary’ ashfall unit w4 cm thick, although deposits containing reworked ash are up to w3 m in total thickness. Exposures of Rangitawa Tephra on the Chatham Islands, >900 km from the source caldera, are w15e30 cm thick. At more proximal localities (w200 km from source), Rangitawa Tephra is w55e70 cm thick and characterized by a crystal-rich basal layer and normal grading. Both distal tephra deposits are characterized by very-fine ash (with high PM10 fractions) and are crystal-poor. Glass chemistry, stratigraphy and grain-size data for these distal tephra deposits are presented with comparisons of their correlation, dispersal and preservation. Using field observations, ash transport and deposition were modeled for both eruptions using a semi-analytical model (HAZMAP), with assumptions concerning average wind direction and strength during eruption, column shape and vent size. Model outputs provide new insights into eruption dynamics and better estimates of eruption volumes associated with tephra fallout. Modeling based on observed YTT distal tephra thicknesses indicate a relatively low (<40 km high), very turbulent eruption column, consistent with deposition from a co-ignimbrite cloud extending over a broad region. Similarly, the Whakamaru eruption was modeled as producing a predominantly Plinian column (w45 km high), with dispersal to the southeast by strong prevailing winds. Significant ash fallout of the main dispersal direction, to the northwest of source, cannot be replicated in this modeling. The widespread dispersal of large volumes of fine ash from both eruptions may have had global environmental consequences, acutely affecting areas up to thousands of kilometers from vent.
Appears in Collections:Papers Published / Papers in press

Files in This Item:
File Description SizeFormat 
matsmi2011.pdfMain article4.71 MBAdobe PDFView/Open
Show full item record

Page view(s) 20

Last Week
Last month
checked on May 27, 2019


checked on May 27, 2019

Google ScholarTM