Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7562
DC FieldValueLanguage
dc.contributor.authorallMasina, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallDi Pietro, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.authorallStorto, A.; Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna, Italyen
dc.contributor.authorallNavarra, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.date.accessioned2012-01-26T08:45:05Zen
dc.date.available2012-01-26T08:45:05Zen
dc.date.issued2011-09en
dc.identifier.urihttp://hdl.handle.net/2122/7562en
dc.description.abstractOne of the main objectives of the global ocean modelling activities at Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC) is the production of global ocean re-analyses over multidecadal periods to reconstruct the state of the ocean and the large scale cir- culation over the recent past. The re-analyses are used for climate applications and for the assessment of the benefits of assimilating ocean observations on seasonal and longer predictions. Here we present the main characteristics of an optimal interpola- tion based assimilation system used to produce a set of global ocean re-analyses validated against a set of high quality in situ observa- tions and independent data. Differences among the experiments of the set are analyzed in terms of improvements in the method used to assimilate the data and the quality of observations them- selves. For example, the integrated ocean heat content, which can be taken as an indicator of climate changes, is examined to detect possible sources of uncertainty of its long-term changes. Global and basin scale upper ocean heat content exhibits warming trends over the last few decades that still depend in a significant way on the assimilated observations and the formulation of the background covariances. However, all the re-analyses show a global warming trend of the oceanic uppermost 700 m over the last five decades that falls within the range of the most recent observation-based estimates. The largest discrepancies between our estimates and observational based ones are confined in the upwelling regions of the PacificandAtlanticOceans.Finally,theresultsshow that the climatological heat and salt transports as a function of latitude also fall within the range of the estimates based on observations and atmospheric re-analyses.en
dc.description.sponsorshipThe authors wish to thank the Centro Euro-Mediterraneo per i Cambiamenti Climatici for its financial and scientific support of some of the activities presented in this work. The implementation and the following improvements of the global ocean assimilation system were carried out in the framework of the ENACT(EVK2-CT2001-00117)and ENSEMBLES(GOCE-CT-2003-505539)projects.en
dc.language.isoEnglishen
dc.publisher.nameelsevieren
dc.relation.ispartofDynamics of Atmospheres and Oceansen
dc.relation.ispartofseries/52(2011)en
dc.subjectData assimilationen
dc.subjectGlobal oceanen
dc.subjectNumerical modelsen
dc.subjectClimateen
dc.titleGlobal ocean re-analyses for climate applicationsen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber341– 366en
dc.identifier.URLhttp://www.sciencedirect.com/science/article/pii/S0377026511000145en
dc.subject.INGV03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modelingen
dc.subject.INGV03. Hydrosphere::03.01. General::03.01.03. Global climate modelsen
dc.subject.INGV03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysisen
dc.identifier.doi10.1016/j.dynatmoce.2011.03.006en
dc.relation.referencesAlessandri, A., Borrelli, A., Masina, S., Carril, A.F., Di Pietro, P., Cherchi, A., Gualdi, S., Navarra, A., 2010. The INGV-CMCC seasonal prediction system: improved ocean initial conditions. Mon. Weather Rev. 138 (7), 2930–2952. Antonov, J.I., Locarnini, R.A., Boyer, T.P., Mishonov, A.V., Garcia, H.E., Levitus, S., 2006. World Ocean Atlas 2005. Vol. 2: Salinity. NOAA Atlas NESDIS 62(2). NOAA, 182 pp. Balmaseda, M., et al., 2010. Role of the ocean observing system in an end-to-end seasonal forecasting system. In: Hall, J., Harrison, D.E., Stammer, D. (Eds.), Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, vol. 1. Venice, Italy, 21–25 September 2009, ESA Publication WPP-306, doi:10.5270/OceanObs09.pp.03. Balmaseda, M., Anderson, D., Vidard, A., 2007. Impact of argo on analyses of the global ocean. Geophys. Res. Lett. 34, L16–L605, doi:10.1029/2007GL0304452. Bell, M.J., Martin, M.J., Nichols, N.K., 2004. Assimilation of data into an ocean model with systematic errors near the equator. Quart. J. Roy. Meteorol. Soc. 130, 873–893. Bellucci, A., Masina, S., Di Pietro, P., Navarra, A., 2007. Using temperature–salinity relations in a global ocean implementation of a multivariate data assimilation scheme. Mon. Weather Rev. 135, 3785–3807. Bonjean, F., Lagerloef, G.S.E., 2002. Diagnostic model and analysis of the surface currents in the Tropical Pacific Ocean. J. Phys. Oceanogr. 32, 2938–2954. Burgers, G., Balmaseda, M.A., Vossepoel, F.C., van Oldenborgh, G.J, van Leeuwen, P.J., 2002. Balanced ocean—data assimilation near the equator. J. Phys. Oceanogr. 32, 2509–2519. Capotondi, A., Wittenberg, A., Masina, S., 2006. Spatial and temporal structure of ENSO in 20th century coupled simulations. Ocean Model. 15 (3–4), 274–298. Carton, J.A., Santarelli, A., 2008. Global decadal upper-ocean heat content as viewed in nine analyses. J. Climate 21, 6015–6035. Carton, J.A., Giese, B.S., Grodsky, S.A., 2005. Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. J. Geophys. Res. 110, C09006, doi:10.1029/2004JC002817. Cherchi, A., Masina, S., Navarra, A., 2008. Impact of extreme CO 2levels on tropical climate: a CGCM study. Clim. Dynam. 31, 743–758. Davey, M., ENACT Partnership, 2006. Multimodel multimethod multi-decadal ocean analyses from the ENACT project. Exchanges 38, 22–25. De Mey, P., Benkiran, M., 2002. A multivariate reduced-order optimal interpolation method and its application to the Mediter- ranean basin-scale circulation. In: Pinardi, N., Woods, J.D. (Eds.), Ocean Forecasting: Conceptual Basis and Applications. Springer Verlag, pp. 281–306. Di Pietro, P., Masina, S., 2009. The CMCC-INGV Global Ocean Data Assimilation System (CIGODAS). CMCC Research Papers, RP0071. Drbohlav, H.K.L., Gualdi, S., Navarra, A., 2007. A diagnostic study of the Indian Ocean dipole mode in El Nino and non El-Nino years. J. Climate 20 (13), 2961–2977. Domingues, C.M., Church, J.A., White, N.J., Gleckler, P.J., Wijffels, S.E., Barker, P.M., Dunn, J.R., 2008. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453, 1090–1093. Ganachaud, A., Wunsch, C., 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrological data. Nature 408, 453–457. Hackert, E., Ballabrera-Poy, J., Busalacchi, A.J., Zhang, R.-H., Murtugudde, R., 2007. Comparison between 1997 and 2002 El Ni˜ no events: role of initial state versus forcing .J.Geophys.Res.112,C01005. Halkides, D., Lee, T., 2009. Mechanisms controlling seasonal-to-interannual mixed-layer temperature variability in the south- eastern tropical Indian Ocean. J. Geophys. Res. 114, C02012, doi:10.1029/2008JC004949. Hanawa, K., Rual, P., Bailey, R., Sy, A., Szabdos, M., 1995. A new depth-time equation for Sippican or TSK T-7, T-6 and T-4 expendable bathythermographs (XBT). Deep-Sea Res. I 42, 1423–1451. Kizu, S., Yoritaka, H., Hanawa, K., 2005. A new fall-rate equation for T–S expendable bathythermograph (XBT) by TSK. J. Ocenogr. 61, 115–121. Ingleby, B., Huddleston, M., 2007. Quality control of ocean temperature and salinity profiles—historical and real-time data. J. Marine Syst. 65, 158–175. Ishii, M., Kimoto, M., 2009. Revaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr. 65, 287–299. Köhl, A., Stammer, D., 2008. Decadal sea level changes in the 50-year GECCO ocean synthesis. J. Climate 21, 1866–1890. Le Traon, P.-Y., Ogor, F., 1998. ERS-1/2 orbit improvement using TOPEX/POSEIDON: the 2 cm challenge. J. Geophys. Res. 103, 8045–8057. Lee, T., Awaji, T., Balmaseda, M., Greiner, E., Stammer, D., 2010a. Ocean state estimation for climate research. In: Hall, J., Harrison, D.E., Stammer, D. (Eds.), Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, vol. 2. Venice, Italy, 21–25 September 2009, ESA Publication WPP-306. Lee, T., Awaji, T., Balmaseda, M., Ferry, N., Fujii, Y., Fukumori, I., Giese, B., Heimbach, P., Hohl, A., Masina, S., Remy, E., Rosati, A., Schodlok, M., Stammer, D., Weaver, A., 2010b. Consistency and fidelity of Indonesian-throughflow total volume transport estimated by 14 ocean data assimilation products. Dyn. Atmos. Ocean 50 (2), 201–223. Lee, T., Awaji, T., Balmaseda, M.A., Greiner, E., Stammer, D., 2009. Ocean state estimation for climate research. Oceanography 22 (3), 160–167. Levitus, S., Antonov, J.I., Boyer, T.P., Locarnini, R.A., Garcia, H.E., Mishonov, A.V., 2009. Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett. 36, doi:10.1029/2008GL037 155. Levitus, S., et al., 1998. World Ocean Database 1998. NOAA Atlas NESDIS 1, 346 pp. Lyman, J.M., Good, S.A., Gouretski, V.V., Ishii, M., Johnson, G.C., Palmer, M.P., Smith, D.M., Willis, J.K., 2010. Robust warming of the global upper ocean. Nature 465, 334–337, doi:10.1038/nature09043. Madec, G., Delecluse, P., Imbard, I., Levy, C., 1999. OPA 8.1 Ocean General Circulation Model Reference Manual. Note du Pôle de modélisation. Inst. Pierre-Simon Laplace (IPSL), France, No. 11, 91 pp. Masina, S., Pinardi, N., Navarra, A., 2001. A global ocean temperature and altimeter data assimilation system for studies of climate variability. Clim. Dynam. 17, 687–700. Masina, S., Di Pietro, P., Navarra, A., 2004. Interannual-to-decadal variability of the North Atlantic from an ocean data assimilation system. Clim. Dynam. 23, 531–546. Navarra, A., Gualdi, S., Masina, S., Behera, S., Luo, J.-J., Masson, S., Guilyardi, E., Delecluse, P., Yamagata, T., 2008. Atmospheric horizontal resolution affects tropical climate variability in coupled models. J. Climate 21, 730–750. Pierce, D.W., Barnett, T.P., Latif, M., 2000. Connections between the Pacific Ocean tropics and midlatitudes on decadal timescales. J. Climate 13, 1173–1194. Pohlmann, H., Jungclaus, J., Marotzke, J., Köhl, A., Stammer, D., 2009. Improving predictability through the initialization of a coupled climate model with global oceanic reanalysis. J. Climate 22, 3926–3938, doi:10.1175/2009JCLI2535. Rayner, N.A., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L.V., Rowell, D.P., Kent, E.C., Kaplan, A., 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108 (D14), 4407. Reynolds, R.W., 1988. A real-time global surface temperature analysis. J. Climate 1, 75–86. Rio, M., Faugere, Y., Schaeffer, P., Moreaux, G., Bourgogne, S., Lemoine, J.M., Bronner, E., Picot, N., 2010. The new CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry and in-situ measurements. In: ESA’s Living Planet Symposium , Berger, Norway, 28 June–July 2010. Stammer, D., et al., 2010. Ocean information provided through ensemble ocean syntheses. In: Hall, J., Harrison, D.E., Stammer, D. (Eds.), Proceedings of OceanObs’09. Sustained Ocean Observations and Information for Society, vol. 2. Venice, Italy, 21–25 September 2009, ESA Publication WPP-306. Storto, A., Dobricic, S., Masina, S., Di Pietro, P., 2011. Assimilating along-track altimetric observations through local hydrostatic adjustment in a global ocean variational assimilation system. Mon. Wea. Rev. 139, 738–754. Trenberth, K.E., Caron, J.M., 2001. Estimates of meridional atmosphere and ocean heat transports. J. Climate 14, 3433–3443. Troccoli, A., Kallberg, P., 2004. Precipitation Correction in the ERA-40 Reanalysis. ERA-40 Project Rep. Series 13, 6 pp. Uppala, S., et al., 2005. The ERA-40 reanalysis. Quart. J. Roy. Meteorol. Soc. 131, 2961–3012. Wijffels, S.E., Toole, J.M., Davis, R., 2001. Revisiting the South Pacific subtropical circulation: A synthesis of World Ocean Circulation Experiment observations along 32S. J. Geophys. Res. 106 (C9), 4151–4154. Wijffels, S.E., Willis, J., Domingues, C.M., Barker, P., White, N.J., Gronell, A., Ridgway, K., Church, J.A., 2008. Changing expendable bathythermograph fall rates and their impact on estimates of thermosteric sea level rise. J. Climate 21, 5657–5672. Xue, Y., Alves, O., Balmaseda, M., Ferry, N., Good, S., Ishikawa, I., Lee, T., McPhaden, M., Peterson, K., Rienecker, M., 2010. Ocean state estimation for global ocean monitoring: ENSO and beyond ENSO. In: Hall, J., Harrison, D.E., Stammer, D. (Eds.), Pro- ceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, vol. 2. Venice, Italy, 21–25 September 2009, ESA Publication WPP-306, doi:10.5270/OceanObs09.cwp.95. Zheng, F., Zhu, J., Zhang, R.-H., 2007. Impact of altimetry data on ENSO ensemble initializations and predictions. Geophys. Res. Lett. 34.en
dc.description.obiettivoSpecifico3.7. Dinamica del clima e dell'oceanoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextpartially_openen
dc.contributor.authorMasina, S.en
dc.contributor.authorDi Pietro, P.en
dc.contributor.authorStorto, A.en
dc.contributor.authorNavarra, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
dc.contributor.departmentCentro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptCNR-Ismar-
crisitem.author.deptCMCC, Italy-
crisitem.author.orcid0000-0001-6273-7065-
crisitem.author.orcid0000-0002-4068-1256-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
DYNAT-D-10-00050R2_EP.pdfPost print version of the printed article1.29 MBAdobe PDFView/Open
Masina_et.al_2011_DAO.pdfVersion on Dynamics of Atmospheres and Oceans5.61 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

19
checked on Feb 7, 2021

Page view(s) 50

244
checked on Apr 17, 2024

Download(s) 50

267
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric