Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7511
DC FieldValueLanguage
dc.contributor.authorallPischiutta, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallSalvini, F.; Roma Tre Universityen
dc.contributor.authorallFletcher, J. B.; USGS Menlo Park (CA)en
dc.contributor.authorallRovelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallBen-Zion, Y.; University of Southern California, Los Angeles (CA)en
dc.date.accessioned2012-01-24T11:49:16Zen
dc.date.available2012-01-24T11:49:16Zen
dc.date.issued2012en
dc.identifier.urihttp://hdl.handle.net/2122/7511en
dc.description.abstractWe investigate shear wave polarization in the Hayward fault zone near Niles Canyon, Fremont, CA. Waveforms of 12 earthquakes recorded by a seven-accelerometer seismic array around the fault are analysed to clarify directional site effects in the fault damage zone. The analysis is performed in the frequency domain through H/V spectral ratios with horizontal components rotated from 0◦ to 180◦, and in the time domain using the eigenvectors and eigenvalues of the covariance matrix method employing three component records. The near-fault ground motion tends to be polarized in the horizontal plane. At two on-fault stations where the local strike is N160◦, ground motion polarization is oriented N88 ± 19◦ and N83 ± 32◦, respectively. At a third on-fault station, the motion is more complex with horizontal polarization varying in different frequency bands. However, a polarization of N86 ± 7◦, similar to the results at the other two on-fault stations, is found in the frequency band 6–8 Hz. The predominantly high-angle polarization from the fault strike at the Hayward Fault is consistent with similar results at the Parkfield section of the San Andreas Fault and the Val d’Agri area (a Quaternary extensional basin) in Italy. In all these cases, comparisons of the observed polarization directions with models of fracture orientation based on the fault movement indicate that the dominant horizontal polarization is near-orthogonal to the orientation of the expected predominant cracking direction. The results help to develop improved connections between fault mechanics and near-fault ground motion.en
dc.language.isoEnglishen
dc.publisher.nameWiley-Blackwellen
dc.relation.ispartofGeophysical Journal Internationalen
dc.relation.ispartofseries3/188(2012)en
dc.subjectEarthquake ground motions.en
dc.subjectInterface wavesen
dc.subjectSite effectsen
dc.subjectWave propagationen
dc.titleHorizontal polarization of ground motion in the Hayward fault zoneen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1255–1272en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.04. Ground motionen
dc.identifier.doi10.1111/j.1365-246X.2011.05319.xen
dc.relation.referencesArgus, D.F. & Gordon, R.G., 2001. Present tectonic motion across the Coast ranges and San Andreas fault system in central California, Bull. seism. Soc. Am., 113, 1580–1592. Bakun, W.H., 1999. Seismic activity of the San Francisco Bay region, Bull. seism. Soc. Am., 89, 764–784. Barchi, M., Amato, A., Cippitelli, G., Merlini, S. & Montone, P., 2007. Extensional tectonics and seismicity in the axial zone of the Southern Apennines, Boll. Soc. Geol. It., Special Issue 7, 47–56. Ben-Zion, Y., 1998. Properties of seismic fault zone waves and their utility for imaging low-velocity structures, J. geophys. Res., 103(B6), 12 567–12 585. Ben-Zion, Y. & Aki, K., 1990. Seismic radiation from an SH line source in a laterally heterogeneous planar fault zone, Bull. seism. Soc. Am., 80, 971–994. Ben-Zion, Y. & Sammis, C.G., 2003. Characterization of fault zones, Pure appl. Geophys., 160, 677–715. Ben Zion, Y. & Shi, Z., 2005. Dynamic rupture on a material interface with spontaneous generation of plastic strain in the bulk, Earth planet. Sci. Lett., 236, 486–496. Ben-Zion, Y. et al., 2003. A shallow fault-zone structure illuminated by trapped waves in the Karadere-Duzce branch of the North Anatolian Fault, western Turkey, Geophys. J. Int., 152, 699–717. Bonamassa, O. & Vidale, J.E., 1991. Directional site resonances observed from aftershocks of the 18 October Loma Prieta earthquake, Bull. seism. Soc. Am., 81(5), 1945–1957. Boness, N.L. & Zoback, M.D., 2006. Mapping stress and structurally controlled shear velocity anisotropy in California, Geology, 34(10), 825–828. Burjanek, J., Gassner-Stamm, G., Poggi, V., Moore, J.R. & Fah, D., 2010.Ambient vibration analysis of an unstable mountain slope, Geophys. J. Int., 180, 820–828, doi:10.1111/j.1365-246X.2009.04451.x. Caine, J.S., Evans, J.P. & Forster, C.B., 1996. Fault zone architecture and permeability structure, Geology, 24, 1025–1028 Calderoni, G., Rovelli, A. & Di Giovambattista, R., 2010. Large amplitude variations recorded by an on-fault seismological station during the L’Aquila earthquakes: evidence for a complex fault-induced site effect, Geophys. Res. Lett., 37, L24305, doi:10.1029/2010GL045697. Cello, G., Gambini, R., Mazzoli, S., Read, A., Tondi, E. & Zucconi, V., 2000. Fault zone characteristics and scaling properties of the Val d’Agri fault system, Southern Apennines, Italy, J. Geodyn., 29(3–5), 293–307. Cello, G., Tondi, E., Van Dijk, J.P., Mattioni, L., Micarelli, L. & Pinti, S., 2003. Geometry, kinematics and scaling properties of faults and fractures as tools for modelling geofluid reservoirs: examples from the Apennines, Italy, Geol. Soc. London Spec. Publ., 212, 7–22, doi:10.1144/GSL.SP.2003.212.01.02. Cultrera, G., Rovelli, A., Mele, G., Azzara, R., Caserta, A. & Marra, F., 2003. Azimuth dependent amplification of weak and strong ground motions within a fault zone, Nocera Umbra, Central Italy, J. geophys. Res., 108(B3), 2156–2170, doi:10.1029/2002JB001929. Di Giulio, G., Cara, F., Rovelli, A., Lombardo, G. & Rigano, R., 2009. Evidences for strong directional resonances in intensely deformed zones of the Pernicana fault, Mount Etna, Italy, J. geophys. Res., 114, doi:10.1029/2009JB006393. Dor, O., Rockwell, T.K. & Ben-Zion, Y., 2006. Geologic observations of damage asymmetry in the structure of the San Jacinto, San Andreas and Punchbowl faults in southern California: a possible indicator for preferred rupture propagation direction, Pure appl. Geophys., 163, 301–349, doi:10.1007/s00024-005-0023-9. Dor, O., Yildirim, C., Rockwell, T.K., Ben-Zion, Y., Emre, O., Sisk, M. & Duman, T.Y., 2008. Geologic and geomorphologic asymmetry across the rupture zones of the 1943 and 1944 earthquakes on the North Anatolian Fault: possible signals for preferred earthquake propagation direction, Geophys. J. Int., 173, 483–504, doi:10.1111/j.1365-246X.2008.03709.x. Falsaperla, S., Cara, F., Rovelli, A., Neri, M., Behncke, B. & Acocella, B., 2010. Effects of the 1989 fracture system in the dynamics of the upper SE flank of Etna revealed by volcanic tremor data: the missing link? J. geophys. Res., 115(B11306), doi:10.1029/2010JB007529. Fletcher, J.B., Fumal, T., Liu, H.-P. & Carroll, L.C., 1990. Near-surface velocities and attenuation at two boreholes near Anza, California, from logging data, Bull. seism. Soc. Am., 80, 807–731. Graymer, R. W., Sarna-Wojcicki, A.M., Walker, J.P., McLaughlin, R.J. & Fleck, R.J., 2002. Controls on timing and amount of right-lateral offset on the East Bay fault system, San Francisco Bay region, California, Bull. geol. Soc. Am., 114, 1471– 1479. Graymer, R.W., Ponce, D.A., Jachens, R.C., Simpson, R.W., Phelps, G.A. & Wentworth, C.M., 2005. Three-dimensional geologic map of the Hayward fault, northern California: correlation of rock units with variations in seismicity, creep rate and fault dip, Geology, 33, 521–524. Griffith, A., Sanz, P.F. & Pollard, D., 2009. Influence of outcrop scale fractures on the effective stiffness of fault damage zone rocks, Pure appl. Geophys., 166, 1595–1627. Harding, T.P., 1974. Petroleum traps associated with wrench faults, Bull. Am. Ass. Petrol. Geol., 60, 365–378. Harding, T.P. & Lowell, J.D., 1979. Structural styles, their plate tectonic habitats & hydrocarbon traps in petroleum provinces, Am. Assoc. Petrol. Geol. Bull., 63, 1016–1058. Hobbs, B.E., Means, W.D. & Williams, P.P., 1976. An Outline of Structural Geology, Wiley, New York, NY, 571 pp. Improta, L. & Bruno, P.P., 2007. Combining seismic reflection with multifold wide-aperture profiling: an effective strategy for high-resolution shallow imaging of active faults, Geophys. Res. Lett., 34, L20310, doi:10.1029/2007GL031893. Jaeger, J.C., Cook, N.G.W. & Zimmerman, R.W., 2007. Fundamentals of Rock Mechanics, Blackwell, Malden, MA, 475 pp. Jurkevics, A., 1988. Polarization analysis of three component array data, Bull. seism. Soc. Am., 78, 1725–1743.Kanasewich, E.R., 1981. Time Sequence Analysis in Geophysics, University of Alberta Press, Edmonton, 477 pp. Kelson, K.I. & Simpson, G.D., 1995. Late Quaternary deformation of the Southern East Bay Hills, Alameda County, California, Am. Assoc. Petrol. Geol. Bull., Abstracts with Programs, Pacific Section Convention, p. 37. La Rocca, M., Galluzzo, D., Saccorotti, G., Tinti, S., Cimini, G.B. & Del Pezzo, E., 2004. Seismic signals associated with landslides and with a tsunami at Stromboli volcano, Italy, Bull. seism. Soc. Am., 94(5), 1850–1867, doi:10.1785/012003238. Lawson, A.C., 1908. The earthquake of 1868, in The California Earthquake of April 18, 1906: Report of the State Earthquake Investigation Commission, Volume I, pp. 434–448, ed. Lawson, A.C., Carnegie Institution of Washington Publication No. 87. Li, Y.G. & Leary, P.C., 1990. Fault zone trapped seismic waves, Bull. seism. Soc. Am., 80, 1245–1271. Li, Y.G., Leary, P.C., Aki, K. & Malin, P., 1990. Seismic trapped modes in the Oroville and San Andreas fault zones, Science, 249, 763–765, doi:10.1126/science.249.4970.763. Li, Y.L., Ellsworth, G.W., Thurber, C.H., Malin, P.E. & Aki, K., 1997. Observations of fault zone trapped waves excited by explosions at the San Andreas fault, central California, Bull. seism. Soc. Am., 87, 210–221. Lienkaemper, J.J., Galehouse, J.S. & Simpson, R.W., 2001. Long-term monitoring of creep rate along the Hayward fault and evidence for a lasting creep response to 1989 Loma Prieta earthquake, Geophys. Res. Lett., 28, 2265–2268. Liu, Y., Teng, T.L. & Ben-Zion, Y., 2005. Near-surface seismic anisotropy, attenuation and dispersion in the aftershock region of the 1999 Chi-Chi earthquake, Geophys. J. Int., 160(2), 695–706. Liu, Y., Zhang, H. & Thurber, C., 2008. Shear wave anisotropy in the crust around the San Andreas fault near Parkfield: spatial and temporal analysis, Geophys. J. Int., 172, 957–970, doi:10.1111/j.1365-246X.2007.03618.x. Lewis, M. & Ben-Zion, Y., 2010. Diversity of fault zone damage and trapping structures in the Parkfield section of the San Andreas Fault from comprehensive analysis of near fault seismograms, Geophys. J. Int., 183, 1579–1595, doi:10.1111/j.1365-246X.2010.04816.x. Lewis, M.A., Peng, Z., Ben-Zion, Y. & Vernon, F.L., 2005. Shallow seismic trapping structure in the San Jacinto fault zone near Anza, California, Geophys. J. Int., 162, 867–881, doi:10.1111/j.1365-246X.2005. 02684.x. Lienkaemper, J.J., 1992. Map of recently active traces of the Hayward fault, Alameda and Contra Costa Counties, California, scale 1:24,000. U.S. Geol. Surv. Misc. Field Stud. Map MF-2196, 13 pp. Lienkaemper, J.J., Borchardt,G.&Lisowski,M., 1991. Historic creep rate& potential for seismic slip along the Hayward fault, California, J. geophys. Res., 96, 18 261–18 283. Mamada, Y., Kuwahara, Y., Ito, H. & Takenaka, H., 2004. Discontinuity of the Mozumi–Sukenobu fault low-velocity zone, central Japan, inferred from 3-D finite-difference simulation of fault zone waves excited by explosive sources, Tectonophysics, 378(3–4), 209–222. Mandl, G., 2000. Faulting in Brittle Rocks, Springer, London, 434 pp. Maschio, L., Ferranti, L. & Burrato, P., 2005. Active extension in Val d’Agri area, Southern Apennines, Italy: implications for the geometry of the seismogenic belt, Geophys. J. Int., 162(2), 591–609. Menardi Noguera, A. & Rea, G., 2000. Deep structure of the Campanian- Lucanian Arc (Southern Apennine, Italy), Tectonophysics, 324(4), 239–265. Mizuno, T. & Nishigami, K, 2004. Deep structure of theMozumi-Sukenobu fault, central Japan, estimated from the subsurface array observation of fault zone trapped waves, Geophys. J. Int., 159(2), 622–642. Pastori, M., Piccinini, D., Margheriti, L., Improta, L., Valoroso, L., Chiaraluce, L. & Chiarabba, C., 2009. Stress aligned cracks in the upper crust of the Val d’Agri region as revealed by shear wave splitting, J. geophys. Res., 179, 601–614. Peng, Z. & Ben-Zion, Y., 2004. Systematic analysis of crustal anisotropy along the Karadere-D¨uzce branch of the north Anatolian fault, Geophys. J. Int., 159, 253–274, doi:10.1111/j.1365-246X.2004.02379.x. Peng, Z. & Ben-Zion, Y., 2006. Temporal changes of shallow seismicvelocity around the Karadere-Duzce branch of the North Anatolian Fault & strong ground motion, Pure appl. Geophys., 163, 567–600. Peng, Z., Ben-Zion, Y.,Michael, A.J. & Zhu, L., 2003. Quantitative analysis of fault zone waves in the rupture zone of the Landers, 1992, California earthquake: evidence for a shallow trapping structure, Geophys. J. Int., 155, 1021–1041. Pischiutta, M., 2010. The polarization of horizontal ground motion: an analysis of possible causes, Ph.D. thesis, Universit`a di Bologna ‘Alma Mater Studiorum’, 172 pp. Pischiutta, M., Rovelli, A., Fletcher, J.B., Salvini, F. & Ben-Zion, Y., 2010. Study of ground motion polarization in fault zones: a relation with brittle deformation fields? American Geophysical Union, Fall Meeting 2010, abstract #S13A-1960. Pischiutta, M., Rovelli, A., Vannoli, P. & Calderoni, G., 2011. Recurrence of horizontal amplification at rock sites: a test using H/V based ground motion prediction equations, in Effects of Surface Geology on SeismicMotion, Proceedings of 4th IASPEI/IAEE International Symposium, 2011 August 23–26, University of California Santa Barbara. Pitarka, A., Collins, N., Thio, H.K., Graves, R. & Somerville, P., 2006. Implication of rupture process and site effects in the spatial distribution and amplitude of the near-fault ground motion from the 2004 Parkfield earthquake, In Proceedings, SMIP06 Seminar on Utilization of Strong motion Data, California Strong Motion Instrumentation Program, Sacramento, CA, pp. 19–40. Provost, A.-S. & Houston, H., 2003. Stress orientations in northern and central California: evidence for the evolution of frictional strength along the San Andreas plate boundary system, J. geophys. Res., 108(B3), 2175, doi:10.1029/2001JB001123. Riedel,W., 1929. Zur mechanik geologischer Brucherscheinungen. Zentralblatt, Mineral Geol Palaont B, 354–368. Rigano, R., Cara, F., Lombardo, G. & Rovelli, A., 2008. Evidence of ground motion polarization on fault zones of Mount Etna volcano, J. geophys. Res., 113, doi:10.1029/2007JB005574. Rovelli, A., Caserta, A., Marra, F. & Ruggiero, V., 2002. Can seismic waves be trapped inside an inactive fault zone? The case study of Nocera Umbra, central Italy, Bull. seism. Soc. Am., 92, 2217–2232. Salvini, F., Billi, A. &Wise, D.U., 1999. Strike-slip fault-propagation cleavage in carbonate rocks: the Mattinata Fault Zone, Southern Apennines, Italy, J. Struct. Geol., 21, 1731–1749. Savage, J.C. & Lisowski, M., 1993. Inferred depth of creep on the Hayward fault, central California, J. geophys. Res., 98, 787–793. Savage,M.K., Peppin,W.A.&Vetter,U.R., 1990. Shear-wave anisotropy and stress direction in & near Long Valley Caldera, California, 1979–1988, J. geophys. Res., 95, 11 165–11 177. Seeber, L., Armbruster, J.G., Ozer, N., Aktar,M., Baris, S., Okaya, D., Ben- Zion, Y. & Field, E. 2000. The 1999 earthquake sequence along the North Anatolia Transform at the juncture between the two main ruptures, in The 1999 Izmit & Duzce Earthquakes: Preliminary Results, pp. 209–223, eds Barka, A., Kazaci, O., Akyuz, S. & Altunel, E., Istanbul Technical University. Spudich, P. & Olsen, K.B., 2001. Fault zone amplified waves as a possible seismic hazard along the Calaveras Fault in central California, Geophys. Res. Lett., 28(13), 2533–2536, doi:10.1029/2000GL011902. Spudich, P. & Xu, L., 2003. Documentation of software package ISOSYN: isochrone integration programs for earthquake ground motion calculations, CD accompanying IASPEI Handbook of Earthquake & Engineering Seismology, 72pp. Spudich, P., Hellweg, M. & Lee, M.H., 1996. Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge California earthquake: implications formainshocks motions, Bull. seism. Soc. Am., 86, 193–208. Storti, F., Salvini, F. & McClay, K., 1997. Fault related folding in sandbox analogue models of thrust wedges, J. Struct. Geol., 19, 583–602. Yu, E.&Segall, P., 1996. Slip in the 1868 Hayward earthquake from the analysis of historical triangulation data, J. geophys. Res., 101, 16 101–16 118. Wakabayashi, J., 1999. Distribution of displacement on and evolution of a young transform fault system: the northern San Andreas fault system, California, Tectonics, 18, 1245–1274.Wakabayashi, J., Hengesh, J.V. & Sawyer, T.L., 2004. Four-dimensional transform fault processes: progressive evolution of step-overs and bends, Tectonophysics, 392, 279– 301. Williams, P.L., 1992. Geologic record of southern Hayward Fault earthquakes, in Proceedings of the Second Conference on Earthquake Hazards in the Eastern San Francisco Bay Area, eds Borchardt, G. et al., Spec. Publ. Calif. Div. Mines Geol. 113, pp. 171–179. Williams, R.A., Simpson, R.W., Jachens, R.C., Stephenson,W.J.,Odum, J.K. & Ponce, D.A., 2005. Seismic reflection evidence for a northeast-dipping Hayward fault near Fremont, California: implications for seismic hazard, J. geophys. Res., 114, doi:10.1029/2005GL023113.en
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.relation.issn0956-540Xen
dc.relation.eissn1365-246Xen
dc.contributor.authorPischiutta, M.en
dc.contributor.authorSalvini, F.en
dc.contributor.authorFletcher, J. B.en
dc.contributor.authorRovelli, A.en
dc.contributor.authorBen-Zion, Y.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentRoma Tre Universityen
dc.contributor.departmentUSGS Menlo Park (CA)en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentUniversity of Southern California, Los Angeles (CA)en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptRoma Tre University-
crisitem.author.deptU.S. Geological Survey, Menlo Park, CA, U.S.A.-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptUniversity of Southern California-
crisitem.author.orcid0000-0001-9991-5048-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
paper_hayward_submitted.pdf5.33 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 20

37
checked on Feb 10, 2021

Page view(s)

293
checked on Apr 24, 2024

Download(s) 20

509
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric