Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7504
DC FieldValueLanguage
dc.contributor.authorallPischiutta, Marta; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallRovelli, Antonio; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallSalvini, Francesco; Roma Tre Universityen
dc.date.accessioned2012-01-24T10:50:14Zen
dc.date.available2012-01-24T10:50:14Zen
dc.date.issued2011-12-09en
dc.identifier.urihttp://hdl.handle.net/2122/7504en
dc.description.abstractAcross the Pernicana fault on Mt. Etna, Di Giulio et al. (2009) found a significant and persistent variation in the polarization angle when moving from the fault hangingwall to the fault footwall. This effect was recurrently observed on several stations and both on volcanic tremor and ambient noise. In this work we propose an interpretation of this variation, calculating the brittle deformation pattern associated to the fault through the package FRAP3 (Salvini, 2002). The Pernicana fault system represents the Northern boundary of the main flank instability of Mt Etna volcano, from the eastern to the south-western portions of the volcanic edifice, where down-slope movements are produced with significant slip rates. It reaches a length of more than 18 km, and the kinematics is mainly left-lateral even though a transtensive component is locally present due to the flank instability. The western portion of the Pernicana fault system, striking N90° and close to Piano Pernicana area, is characterized by the most intense deformation (Acocella and Neri, 2005). In this area Di Giulio et al. (2009) performed volcanic tremor and noise measurements on a dense grid along and across the fault zone, in order to calculate the local polarization azimuths. The Horizontal-to-vertical spectral ratios (HVSR) showed large directional resonances of horizontal components within the damaged fault zone, resonance everywhere occurring around 1 Hz. Conversely the polarization azimuth varies from N160 at stations installed on the fault hangingwall to N120 at stations lying in the fault footwall. Previous studies (e.g. Pischiutta et al., 2011) successfully related that ground motion horizontal polarization in fault zones can be produced by the brittle deformation fields in the damage zone, with a predominant near-perpendicular relation between fractures and polarization strikes. Given this premise, we modeled the fracture field expected for the Pernicana fault system in the Piano Pernicana sector. We assumed a pure left-lateral kinematics in the hanging wall, while in the footwall that is part of the flank instability we added a slight trantensive component to the strike-slip movement. As a result, in the fault hanging wall the synthetic cleavage has a higher probability to develop, with an orientation toward N75 direction. Meanwhile, the extensional fractures appear to be the dominating fracture systems in the fault footwall, with a modeled N40 orientation. As a consequence, we ascribe the variation in polarization azimuth found by Di Giulio et al (2009) to the distribution of the fracture systems, which appear to be different in the hangingwall and in the footwall. Consistently with previous studies, a near-perpendicular relation between wave polarization and the dominant fracture field is recognized on the Pernicana fault, due to the reduction of rock stiffness caused by the presence of fractures: horizontal vibrations are far more pronounced in the direction perpendicular to fractures.en
dc.language.isoEnglishen
dc.relation.ispartofAGU fall meetingen
dc.subjecttopographic amplificationen
dc.titleTHE VARIATION OF GROUND MOTION POLARIZATION ACROSS THE PERNICANA FAULT, MT.ETNAen
dc.typeConference paperen
dc.description.statusUnpublisheden
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.04. Ground motionen
dc.description.ConferenceLocationSan Francisco (CA)en
dc.relation.referencesAcocella, V. & M. Neri (2005). Structural features of an active strike-slip fault on the slinding flank of Mt. Etna (Italy), J. Struct. Geol., 27, 343– 355. Azzaro, R. (1997). Seismicity and active tectonics along the Pernicana Fault, Mt. Etna, Italy. Acta Vulcanol 9(12):7–14 Behncke B & M. Neri (2003). The July–August 2001 eruption of Mt. Etna (Sicily). Bull Volcanol 65:461–476. Bonforte A, Gambino S & M. Neri (2009). Intrusion of eccentric dikes: the case of the 2001 eruption and its role in the dynamics of Mt. Etna volcano. Tectonophys 471:78–86. Caine, J.S., Evans, J. P. & C.B. Forster (1996). Fault zone architecture and permeability structure, Geology, 24, 1025-1028. Di Giulio, G., Cara, F., Rovelli, A., Lombardo, G. & R. Rigano (2009). Evidences for strong directional resonances in intensely deformed zones of the Pernicana fault, Mount Etna, Italy, J.Geophys. Res., 114. Gardun?o, V.H., Neri, M., Pasquare`, G., Borgia, A. & A. Tibaldi (1997). Geology of the NE Rift of Mount Etna, Sicily (Italy). Acta Vulcanologica 9, 91–100. Jurkevics A. (1988). Polarization analysis of three component array data, Bull. Seism. Soc. Am., 78, 1725-1743.Mandl, G. (2000). Faulting in Brittle Rocks. An Introduction to the Mechanics of Tectonic Faults. Springer, 434 pp. Neri, M., V. Acocella, & B. Behncke (2004). The role of the Pernicana Fault System in the spreading of Mt. Etna (Italy) during the 2002–2003 eruption, Bull. Volcanol., 66, 417 – 430. Obrizzo F, Pingue F, Troise C. & G. De Natale (2001). Coseismic displacements and creeping along the Pernicana Fault (Etna, Italy) in the last 17 years: a detailed study of a tectonic structure on a volcano. J Volcanol Geotherm Res 109:109–131 Pischiutta, M., Salvini, F., Fletcher, J.B., Rovelli, A. & Ben-Zion, Y. (2011). Horizontal polarization of ground motion in the Hayward fault zone at Fremont, California: Dominant fault-high-angle polarization and fault-induced cracks. Geophys.J.Int.. accepted. Riedel, W. (1929). Zur mechanik geologischer Brucherscheinungen. Zentralblatt, Mineral Geol Palaont B, 354–368. Rust, D., B. Behncke, M. Neri & A. Ciocanel (2005). Nested zones of instability in the Mount Etna volcano edifice, Italy, J. Volcanol. Geotherm. Res., 144, 137–153. Salvini, F., Billi, A. & D.U. Wise (1999). Strike-slip fault-propagation cleavage in carbonate rocks: the Mattinata Fault Zone, Southern Apennines, Italy, J. Struct. Geol., 21, 1731-1749.en
dc.description.fulltextopenen
dc.contributor.authorPischiutta, Martaen
dc.contributor.authorRovelli, Antonioen
dc.contributor.authorSalvini, Francescoen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentRoma Tre Universityen
item.openairetypeConference paper-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptRoma Tre University-
crisitem.author.orcid0000-0001-9991-5048-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Conference materials
Files in This Item:
File Description SizeFormat
AGU2011.pdfposter226.36 kBAdobe PDFView/Open
Show simple item record

Page view(s)

160
checked on Apr 24, 2024

Download(s) 50

134
checked on Apr 24, 2024

Google ScholarTM

Check