Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7498
DC FieldValueLanguage
dc.contributor.authorallLovati, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italiaen
dc.contributor.authorallBakavoli, M.; International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iranen
dc.contributor.authorallMassa, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italiaen
dc.contributor.authorallFerretti, G.; Università degli studi di Genova, Dip.Te.Ris., sezione de Geofisica, Genova, Italyen
dc.contributor.authorallPacor, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italiaen
dc.contributor.authorallPaolucci, R.; Dipartimento di Ingegneria Strutturale, Politecnico di Milano, Milano, Italyen
dc.contributor.authorallHaghshenas, E.; International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iranen
dc.contributor.authorallKamalian, M.; International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iranen
dc.date.accessioned2012-01-24T07:43:30Zen
dc.date.available2012-01-24T07:43:30Zen
dc.date.issued2011-08en
dc.identifier.urihttp://hdl.handle.net/2122/7498en
dc.description.abstractIn the present work the seismic site response of Narni ridge (Central Italy) is evaluated by comparing experimental results and numerical simulations. The inhabited village of Narni is located in central Apennines at the top of a steep massive limestone ridge. From March to September 2009 the site was instrumented with 10 weak-motion stations, 3 of which located at the base of the ridge and 7 at the top. The velocimetric network recorded 642 events of ML up to 5.3 and hypocentral distance up to about 100 km. The great amount of data are related to the April 2009 L’Aquila sequence. The site response was analyzed using both reference (standard spectral ratio, SSR) and non reference spectral techniques (horizontal to vertical spectral ratio, HVSR). Moreover directional analyses were performed in order to evaluate the influence of the ridge orientation with respect to the selected sourcesite paths. In general the experimental results show amplification factors for frequencies between 4 and 5Hz for almost all stations installed along the crest. The SSR technique provides amplification factors up to 4.5 in a direction perpendicular to the main elongation of the ridge. The results obtained from the data analyses were used as a target for bidimensional and tridimensional numerical simulations, performed using a hybrid finite-boundary element method and a boundary element method for 2D and 3D modelling, respectively. In general, the results obtained through numerical simulation fit well the experimental data in terms of range of amplified frequencies, but they underestimate by a factor of about 2 the observed amplifications.en
dc.language.isoEnglishen
dc.relation.ispartofBulletin of Earthquake Engineeringen
dc.relation.ispartofseries/9 (2011)en
dc.subjectTopographical effects · Spectral analyses · Direction analyses · Vertical amplification · Numerical modellingen
dc.titleEstimation of topographical effects at Narni ridge (Central Italy): comparisons between experimental results and numerical modellingen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1987-2005en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneousen
dc.identifier.doi10.1007/s10518-011-9315-xen
dc.relation.referencesAmanti, M., R. Bontempo, P. Cara, G. Conte, D. Di Bucci, P. Lembo, N. A. Pantaleone, and R. Ventura (2002). Editors EDS, Carta Geologica d’Italia Interattiva 1:100,000 (Interactive geological map of Italy, 1:100,000), SGN, SSN, ANAS, 3cd-rom. Ameri, G., Massa, M., Bindi, D., D’Alema, E., Gorini, A., Luzi, L., Marzorati, M., Pacor, F., Paolucci, R., Puglia, R. and Smerzini, C. (2009). The 6 April 2009, Mw 6.3, L’Aquila (Central Italy) earthquake: strong-motion observations, Seism. Res. Lett., 80, n6, 951-966. Bard P. Y. (1982). Diffracted waves and displacement fields over two-dimensional elevated topographies, Geophys. J. Int., 71 731-760. Bard P.-Y. and B. E. Tucker (1985). Underground and ridge site effects: a comparison of observation and theory, Bull. Seism. Soc. Am., 75, 905-922. Boore D. M. (1972). A note on the effect of simple topography on seismic SH waves. Bull. Seism. Soc. Am., 62, 275-284. Borcherdt R.D. (1970). Effects of local geology on ground motion near San Francisco Bay. Bull. Seism. Soc. Am., 60, 29-61. Bouchon M. (1973). Effect of topography on surface motion. Bulletin of the Seismological Society of America, 63: 615-632. Bouchon, M. and Barker, J.S. (1996). Seismic response of a hill: the example of Tarzana, California, Bull. Seism. Soc. Am., 60: 66–72. Brebbia C.A. and Dominguez J. (1989). Boundary Elements, An Introductory Course. Computational Mechanics Publications: Boston. Buech F., Davies T. R. and Pettina J. R. (2010). The Little Red Hill Seismic Experimental Study: Topographic Effects on Ground Motion at a Bedrock-Dominated Mountain Edifice, Bull. Seism. Soc. Am., vol. 100; no. 5A; p. 2219-2229. Chavez-Garcia F., Sanchez L.R. and Hatzfeld D. (1996). Topographic site effects and HVSR. A comparison between observation and theory, Bull. Seism. Soc. Am., 86, 5, 1559-1573. Faccioli E., Paolucci R., Maggio F., Quarteroni A. (1997). 2D and 3D elastic wave propagation by pseudo-spectral domain decomposition method, Journal of Seismology 1, 237-251. Faccioli E., Vanini M. and Frassine L. (2002). “Complex” Site Effects in Earthquake Ground Motion, including Topography. 12th European Conference on Earthquake Engineering, Barbican Centre, London, UK. Frangi A. (1999). Elastodynamics by BEM: a new direct formulation. International Journal for Numerical Methods in Engineering; 45:721–740. Géli L. and P.-Y. Bard (1988). The effect of topography on earthquake ground motion : a review and new results, Bull. Seism. Soc. Am. 78, 42-63. Kamalian M., Gatmiri B., Sohrabi-Bidar A. (2003). On Time-Domain Two-Dimensional Site Response Analysis of Topographic Structures by BEM. Journal of Seismology and Earthquake Engineering, 5:35-45. Kamalian M., Jafari M. K., Sohrabi-Bidar A., Razmkhah A., Gatmiri B (2006). Time-Domain Two-Dimensional Site Response Analysis of Non-Homogeneous Topographic Structures by A Hybrid FE / BE Method. Soil Dyn Earthquake Eng;26:753-765. Kamalian M., Gatmiri B., Sohrabi Bidar A., Khalaj A. (2007). Amplification Pattern of 2D Semi-Sine Shaped Valleys Subjected To Vertically Propagating Incident Waves. Communications in Numerical Methods in Engineering;23: 871-887. Komatitsch D. and Vilotte J.P. (1998). The Spectral Element Method: An Efficient Tool to Simulate the Seismic Response of 2D and 3D Geological Structures, Bull. Seism. Soc. Am., 88, 368-392. Kosloff D., Kessler D., Filho Q.A., Tessmer E., Behle A. And Strahilevits R. (1990). Solution of the equation of dynamic elasticity by a Chebychev spectral method, Geophysics, 55, 6, 734-748. LeBrun B., Hatzfeld D., Bard P.Y. and Bouchon M. (1999). Experimental study of the ground motion on a large scale topographic hill al Kitherion (Greece), Journal of Seism., 3, 1-15. Lermo J. and Chavez-Garcia F.J. (1993). Site effect evaluation using spectral ratio with only one station, Bull. Seism. Soc. Am., 83, 1574-1594. Marzorati S., Ladina C. , Falcucci E. , Gori S. , Ameri G. , Galadini F. (2010). Site effects “on the rock”: the case of Castelvecchio Subequo (L’Aquila, central Italy), submitted to Bulletin of Earthquake Engineering. Massa M., Ferretti G., Cevasco A., Isella L. e Eva C. (2004). Analysis of site amplification phenomena: an application in Ripabottoni for the 2002 Molise, Italy, earthquake, Earthquake Spectra, 20, issue S1, 107-118. Massa M., Lovati S., D'Alema E., Ferretti G. and Bakavoli M. (2010). An experimental approach for estimating seismic amplification effects at the top of a ridge, and the implication for ground-motion predictions: the case of Narni (central Italy), Bull. Seism. Soc. Am., in press. NTC (Nuove Norme Tecniche per le Costruzioni) (2008). Part 3: Categorie di sottosuolo e condizioni topografiche, Gazzetta Ufficiale n. 29 del 4 febbraio 2008. Paolucci R. (1999). Numerical evaluation of the effect of cross-coupling of different components of ground motion in site response analyses, Bull Seism Soc Am, 89, 877-887. Paolucci R., Faccioli E., Maggio F. (1999). 3D Response analysis of an instrumented hill at Matsuzaki, Japan, by a spectral method, Int. Journal of Seismology 3, 191-209. Paolucci R. (2002). Amplification of earthquake ground motion by steep topographic irregularities. Earth. Eng. and Structural Dynamics, 31, 1831-1853. Pischiutta M., Cultrera G., Caserta A., Luzi L. and Rovelli A. (2010). Topographic effects on the hill of Nocera Umbra, central Italy, Geophysical Journal International, Vol. 182, 2, 977–987. Regione Umbria, direzione politiche territoriali ambiente infrastrutture, servizio geologico (2000). Microzonazione sismica dell’area Narnese Ternana colpita dall’evento sismico del 16 dicembre 2000, Relazione conclusiva, 46 pp. Rovelli A., A. Caserta, F. Marra and V. Ruggiero (2002). Can seismic waves be trapped inside an inactive fault zone? The case study of Nocera Umbra, central Italy, Bull. Seism. Soc. Am., 92, 2217-2232. Sanchez-Seisma F. J. (1990). Elementary solutions for response of a wedge-shaped medium to incident SH and SV waves, Bull. Seism. Soc. Am., 80, 737-742. Sanchez-Sesma F. J. and Campillo M. (1991). Diffraction of P, SV, and Rayleigh waves by topographical features: a boundary integral formulation, Bull. Seism. Soc. Am., 81, 2234-2253. Sanchez-Sesma F. J., Herrera I. and Aviles J. (1982). A boundary method for elastic wave diffraction: application to scattering SH waves by surface irregularities. Bulletin of the Seismological Society of America, 72: 473-490. Sills, L. B. (1978). Scattering of horizontally polarized shear waves by surface irregularities. Geophys. J. R. Astron. Soc., 54: 319-348. Smith, W. D. (1975). The application of finite element analysis to body wave propagation problems, Geophys. J. 42, 747-768. Sohrabi Bidar A., Kamalian M., Jafari M.K. (2009). Time-domain BEM for three-dimensional site response analysis of topographic structures. Int. Journal of Numerical Methods in Engineering;79:1467-1492. Spudich P., Hellweg M. and Lee W.H. (1996). Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: implication for mainshock motion, Bull. Seism. Soc. Am., 86, 193-208. Von Estorff O, Hagen C. (2006). Iterative coupling of FEM and BEM in 3D transient elastodynamic. Engineering Analysis with Boundary Elements: 30:611–622. Zahradnlk, J. and L. Urban (1984). Effect of a simple mountain range on underground seismic motion, Geophys. J. R. Astr. Soc. 79, 167-183.en
dc.description.obiettivoSpecifico4.1. Metodologie sismologiche per l'ingegneria sismicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorLovati, S.en
dc.contributor.authorBakavoli, M.en
dc.contributor.authorMassa, M.en
dc.contributor.authorFerretti, G.en
dc.contributor.authorPacor, F.en
dc.contributor.authorPaolucci, R.en
dc.contributor.authorHaghshenas, E.en
dc.contributor.authorKamalian, M.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italiaen
dc.contributor.departmentInternational Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iranen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italiaen
dc.contributor.departmentUniversità degli studi di Genova, Dip.Te.Ris., sezione de Geofisica, Genova, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italiaen
dc.contributor.departmentDipartimento di Ingegneria Strutturale, Politecnico di Milano, Milano, Italyen
dc.contributor.departmentInternational Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iranen
dc.contributor.departmentInternational Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iranen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia-
crisitem.author.deptInternational Institute of Earthquake Engineering and Seismology-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia-
crisitem.author.deptUniversità di Genova - Genova - Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia-
crisitem.author.deptPolitecnico Milano-
crisitem.author.deptLCPC & LGIT, Grenoble, France-
crisitem.author.deptInternational Institute of Earthquake Engineering and Seismology-
crisitem.author.orcid0000-0002-2046-2152-
crisitem.author.orcid0000-0003-0696-2035-
crisitem.author.orcid0000-0001-5745-0414-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
Lovati_et_al_BEE.pdf6.71 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

30
checked on Feb 10, 2021

Page view(s) 50

187
checked on Mar 27, 2024

Download(s) 20

343
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric