Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7448
DC FieldValueLanguage
dc.contributor.authorallSalvi, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallStramondo, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallFunning, G. J.; University of Californiaen
dc.contributor.authorallFerretti, A.; TeleRilevamento Europaen
dc.contributor.authorallSarti, F.; European Space Agency – ESA/ESRINen
dc.contributor.authorallMouratidis, A.; European Space Agency – ESA/ESRINen
dc.date.accessioned2012-01-23T06:47:51Zen
dc.date.available2012-01-23T06:47:51Zen
dc.date.issued2012en
dc.identifier.urihttp://hdl.handle.net/2122/7448en
dc.description.abstractWe describe the state of the art of scientific research on the earthquake cycle based on the analysis of Synthetic Aperture Radar (SAR) data acquired from satellite platforms. We examine the achievements and the main limitations of present SAR systems for the measurement and analysis of crustal deformation, and envision the foreseeable advances that the Sentinel-1 data will generate in the fields of geophysics and tectonics. We also review the technological and scientific issues which have limited so far the operational use of satellite data in seismic hazard assessment and crisis management, and show the improvements expected from Sentinel-1 dataen
dc.language.isoEnglishen
dc.publisher.nameElsevier Inc NY Journalsen
dc.relation.ispartofRemote sensing of environmenten
dc.relation.ispartofseries/120 (2012)en
dc.subjectSAR Interferometryen
dc.subjectseismic cycleen
dc.titleThe Sentinel-1 mission for the improvement of the scientific understanding and the operational monitoring of the seismic cycleen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber164-174en
dc.subject.INGV04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoringen
dc.identifier.doi10.1016/j.rse.2011.09.029en
dc.relation.referencesAdam N., A. Parizzi, M. Eineder & Crosetto, M., (2009). Practical persistent scatterer processing validation in the course of the Terrafirma project, Journal of Applied Geophysics 69, pp. 59–65. Atzori, S., M. Manunta, G. Fornaro, A. Ganas, and S. Salvi (2008). Postseismic displacement of the 1999 Athens earthquake retrieved by the differential interferometry by synthetic aperture radar time series, J. Geophys. Res., 113, B09309, doi:10.1029/2007JB005504. Atzori S., I. Hunstad, M. Chini, S. Salvi, C. Tolomei, C. Bignami, S. Stramondo, E. Trasatti, A. Antonioli, and E. Boschi, (2009). Finite fault inversion of DInSAR coseismic displacement of the 2009 L’Aquila earthquake (Central Italy). Geophys. Res. Lett., 36, 15, L15 305. Baba, T., Hirata, K., Hori, T. & Sakaguchi, H., (2006). Offshore geodetic data conducive to the estimation of the afterslip distribution following the 2003 Tokachi-oki earthquake, Earth planet. Sci. Lett., 241, 281–292. Beer, T. & Ismail-Zadeh, A., (2002). Risk Science and Sustainability, NATO Science Series II, 112, Kluwer Acad. Pub., ISBN 1-4020-1446-5. Béjar-Pizarro, M., Carrizo, D., Socquet, A. & Armijo, R., (2010). Asperities and barriers on the seismogenic zone in North Chile: State of the art after the 2007 Mw 7.7 Tocopilla earthquake inferred by GPS and InSAR data. Geophys. J. Int. (2010) 183, 390–406. Berardino, P., Fornaro, G., Lanari, R. & Sansosti, E., (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Transactions on Geoscience and Remote Sensing, 40, pp. 2375−2383. Biggs, J., Bergman, E., Emmerson, B., Funning, G.J., Jackson, J., Parsons, B. & Wright, T.J., (2006). Fault identification for buried strike-slip earthquakes using InSAR: The 1994 and 2004 Al Hoceima, Morocco earthquakes. Geophysical Journal International, 166(3), 1347-1362. Biggs, J., Wright, T., Lu, Z., & Parsons, B., (2007). Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska. Geophysical Journal International, 170, 3, doi:10.1111/j.1365-246X.2007.03415.x Biggs, J., Bürgmann , R., Freymueller, J.T., Lu, Z., Parsons, B., Ryder, I., Schmalzle, G., Wright, T., (2009). The postseismic response to the 2002 M 7.9 Denali Fault earthquake: constraints from InSAR 2003–2005. Geophys. J. Int. 176, 353-367 doi: 10.1111/j.1365-246X.2008.03932.x Briole P., M.F. Buongiorno, C. Spinetti, S. Stramondo, F. Costantini, M Marconcini, A. Mouratidis, F. Sarti, F. Guglielmino, & G. Puglisi, Long-term experience gathered on Etna for volcano monitoring using optical and radar remote sensing, in preparation for Sentinel Missions. This volume. Bürgmann , R., & Prescott, W.H., (2000). Monitoring the spatially and temporally complex active deformation field in the southern Bay area. Final technical report. Collaborative research with University of California at Berkeley and U. S. Geological Survey, Menlo Park, CA, USA Bürgmann , R., Ergintav, S., Segall, P., Hearn, E., McClusky, S., Reilinger, R.E.,Woith, H. & Zschau, J. 2002. Time-Space Variable Afterslip on and Deep Below the Izmit Earthquake Rupture, Bull. seism. Soc. Am., 92, 126–137. Bürgmann , R., Rosen, P. A., & Fielding, E. J., (2000). Synthetic Aperture Radar Interferometry to Measure Earth’s Surface Topography and its Deformation, Ann. Rev. Earth and Plan. Sci. 28, pp.169–209. Caltagirone F., G. Angino, F. Impagnatiello, A. Capuzi, S. Fagioli, & R. Leonardi, (2007). COSMO-SkyMed: An Advanced Dual System for Earth Observation, Proc. of the Int. Geosci. and Remote Sensing Symp. (IGARSS07), Barcelona. Cavalié, O., C. Lasserre, M. P. Doin, G. Peltzer, J. Sun, X. Xu, & Z. K. Shen, (2008). Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR, Earth Planet. Sci. Lett., 275, 246–257. Chlieh,M., de Chabalier, J.B., Ruegg, J.C., Armijo, R., Dmowska, R., Campos, J. & Feigl, K.L., (2004). Crustal deformation and fault slip during the seismic cycle in the North Chile subduction zone, from GPS and InSAR observations, Geophys. J. Int., 158(2), 695–711. Crosetto, M., Crippa, B., & Biescas, E. (2005). Early detection and in-depth analysis of deformation phenomena by radar interferometry. Engineering Geology, 79(1–2), 81−91. Dell’Acqua F., Bignami C., Chini M., Lisini G., Polli D., & Stramondo S., Earthquake rapid mapping by satellite remote sensing data: L’Aquila April 6th, 2009 event, J-STARS, under review. Deraw, D., (1999). Dinsar and coherence tracking applied to glaciology: the example of the Shirase Glacier. ESA Fringe meeting 1999, Liège. Ergintav, S. et al., (2002). Postseismic deformation near the Izmit earthquake (17 August 1999,M7.5) rupture zone, Bull. seism. Soc. Am., 92, 194–207. ESA, (2010). The GMES Sentinels. http://www.esa.int/SPECIALS/Operations/SEM98Z8L6VE_0.html Feigl, K., F. Sarti, H. Vadon, S. McClusky, S. Ergintav, P. Durand, R. Bürgmann, A. Rigo, D. Massonnet, and R. Reilinger (2002). Estimating slip distribution for the Izmit mainshock from coseismic GPS, ERS-1, RADARSAT, and SPOT measurements, Bull. Seism. Soc. Am., 92, no. 1, 138–160. Ferretti, A., Prati C. & Rocca, F. (2000). Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry, IEEE Trans. Geoscience and Remote Sensing, 38(5), pp. 2202-2212. Ferretti, A., Prati, C. & Rocca, F., (2001). Permanent Scatterers in SAR Interferometry, IEEE Trans. Geoscience and Remote Sensing, 39(1), pp. 8-20. Ferretti, A. Fumagalli, F. Novali, C. Prati, F. Rocca, & A. Rucci, (2009). The second generation PSInSAR approach: SqueeSAR, presented at the FRINGE2009 ESA Conference, Frascati, Italy. Fialko, Y., (2004). Evidence of fluid-filled upper crust from observations of postseismic deformation due to the 1992 Mw7.3 Landers earthquake, J. Geophys Res., 109, B08401, doi:10.1029/2003JB002985 Fialko, Y., (2006). Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system, Nature, 441, 968–971. Fielding, E.J., Wright, T., Muller, J., Parsons, B., Walker R., (2004). Aseismic deformation of a fold-and-thrust belt imaged by synthetic aperture radar interferometry near Shahdad, southeast Iran, Geology, v. 32, p. 577-580, doi:10.1130/G20452.1 Fielding, E. J., Talebian, M., Rosen, P. A., Nazari, H., Jackson, J. A., Ghorashi, M., & Berberian, M., (2005). Surface ruptures and building damage of the 2003 Bam, Iran earthquake mapped by satellite synthetic aperture radar interferometric correlation: J. Geophys. Res. 110, B03302, doi:10.1029/2004JB003299 Fielding, E.J. , P.R. Lundgren, R. Bürgmann & G.J. Funning, (2009). Shallow fault-zone dilatancy recovery after the 2003 Bam, Iran earthquake, Nature, 458, 64–68. Funning, G. J., Parsons, B., Wright, T. J., Jackson, J. A., & Fielding, E. J., (2005a). Surface displacements and source parameters of the 2003 Bam, Iran earthquake from Envisat Advanced Synthetic Aperture Radar imagery, J. Geophys. Res., 110 (B9), B09406, doi:10.1029/2004JB003338. Funning, G. J., Barke, R. M. D., Lamb, S. H., Minaya, E., Parsons, B. E., & Wright, T. J., (2005b). The 1998 Aiquile, Bolivia earthquake: an active fault revealed with InSAR, Earth Planet. Sci. Lett., 232, 39-49. Funning, G.J., Bürgmann , R., Ferretti, A., Novali, F. & Fumagalli, A., (2007). Creep on the Rodgers Creek Fault, northern San Francisco Bay area from a 10 year PS-InSAR dataset. Geophysical Research Letters, 34(19), L19306. Geller, R. J., (1997). Earthquake prediction: a critical review, Geophysical Journal International, 131, 3, 425-450 Geller J.R., Jackson D.D., Kagan Y.Y., & Mulargia Y.F., (1996). Earthquakes Cannot Be Predicted, Science Online, 275 (5306):1616. Gray, A. L., Mattar, K. E., Vachon, P. W., Bindschadler, R., Jezek, K. C., Forster, R., Crawford, J. P., (1998). InSAR results from the RADARSAT Antarctic Mapping Mission Data: Estimation of Glacier Motion using a simple Registration Procedure, Proceedings of IGARSS’98, Seattle. Hearn, E.H., Bürgmann , R. & Reilinger, R.E., (2002). Dynamics of Izmit Earthquake Postseismic Deformation and Loading of the Düzce Earthquake Hypocenter. Bull. seism. Soc. Am., 92, 172–193. Hearn, E. H., K. Johnson, and W. Thatcher (2010). Space Geodetic Data Improve Seismic Hazard Assessment in California, Eos Trans. AGU, 91(38), doi:10.1029/2010EO380007. Hobiger, T., Y. Kinoshita, S. Shimizu, R.Ichikawa, M.Furuya, T.Kondo & Y.Koyama, (2010). On the importance of accurately ray-traced troposphere corrections for Interferometric SAR data. Journal of Geodesy, Volume 84, Number 9, 537-546, DOI: 10.1007/s00190-010-0393-3 Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31, L23611. doi:10.1029/2004GL021737 Hooper A., (2008). A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, Vol. 35, L16302, doi:10.1029/2008GL034654. Hsu, Y.-J., M. Simons, J.-P. Avouac, J. Galetzka, K. Sieh, M. Chlieh, D. Natawidjaja, L. Prawirodirdjo, & Y. Bock (2006). Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra, Science, 312, 1921–1926. Hunstad, I., Pepe, A., Atzori, S., Tolomei, C., Salvi, S. & Lanari, R., (2009). Surface deformation in the Abruzzi region, central Italy, from multitemporal DInSAR analysis. Geophysical Journal International, 178(3), pp. 1193-1197. Hyndman, R.D & Wang, K., (1993). Thermal constraints on the zone of major thrust earthquake failure: the Cascadia subduction zone, J. Geophys. Res., 98, 2039–2060. Jackson, J., Bouchon, M., Fielding, E., Funning, G., Ghorashi, M., Hatzfeld, D., Nazari, H., Parsons, B., Priestley, K., Talebian, M., Tatar, M., Walker, R. & Wright, T., (2006). Seismotectonic, rupture process, and earthquake-hazard aspects of the 2003 December 26 Bam, Iran, earthquake. Geophysical Journal International, 166(3), 1270-1292. Jackson D. D., Y. Y. Kagan, & F. Mulargia, (1997). Earthquakes cannot be predicted, Science 275, 1616 Jacobs, A., Sandwell, D., Fialko, Y. & Sichoix, L., (2002). The 1999 Mw 7.1 Hector Mine, California, Earthquake: Near-Field Postseismic Deformation from ERS Interferometry, Bull. seism. Soc. Am., 92, 4, 1433–1442. Jónsson, S. , H. Zebker, P. Segall, & F. Amelung, (2002) Fault slip distribution of the 1999 Mw7.2 Hector Mine Earthquake, California, estimated from satellite Radar and GPS measurements. Bull. Seismol. Soc. Amer., 92, 4, 1377–1389. Jonsson, S., Segall, P., Pederson, R. & Bjornsson, G., (2003). Post-earthquake ground movements correlated to pore-pressure transients, Nature, 424, 179–183. King, G. C. P., R. S. Stein, & J. Lin, (1994). Static stress changes and the triggering of earthquakes, Bull. Seism. Soc. Am., 84, 935-953. Lanari, R., Mora, O., Manunta, M., Mallorquí, J. J., Berardino, P., & Sansosti, E., (2004). A Small-Baseline Approach for Investigating Deformations on Full-Resolution Differential SAR Interferograms, IEEE Transactions on Geoscience and Remote Sensing, 42 (7), 1377-1386. Lanari, R., and 11 more co-authors (2010). Surface displacements associated with the L'Aquila 2009 Mw 6.3 earthquake (central Italy): New evidence from SBAS-DInSAR time series analysis, Geophys. Res. Lett., 37, L20309, doi:10.1029/2010GL044780. Lettieri, E., Masella, C., & Radaelli, G., 2009). Disaster management: findings from a systematic review, Disaster Prevention and Management, 18, 2, 117 – 136. Lohman, R. B., Simons, M. and Savage, B., (2002). Location and mechanism of the Little Skull Mountain earthquake as constrained by radar interferometry and seismic waveform modeling, J. Geophys. Res., 107 (B6), 2118, doi:10.1029/2001JB000627. Lundgren P. and S. Stramondo, Slip Distribution of the 1997 Umbria-Marche earthquake sequence through joint inversion of GPS and DInSAR data, Journal of Geophysical Research, VOL. 107, NO. B11, 2316, doi:10.1029/2000JB000103, November 2002 Lyons, S., & D. Sandwell, (2003). Fault creep along the southern San Andreas from interferometric synthetic permanent scatterers, and stacking, J. Geophys. Res. , 108(B1), 2047, doi:10.1029/2002JB001831. Masterlark, T., (2003). Finite element model predictions of static deformation from dislocation sources in a subduction zone: Sensivities to homogeneous, isotropic, Poisson-solid, and half-space assumptions. J. Geophys. Res., 108(B11), 2540, doi:10.1029/2002JB002296 Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Fiegl, & T. Rabaute, 1993). The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364, 138–142. Massonnet, D., Feigl, K., Rossi, M. & Adragna, F., (1994). Radar interferometric mapping of deformation in the year after the Landers earthquake. Nature, 369, 227–230. Massonnet, D., Feigl, K. L., Vadon, H., & Rossi, M., (1996). Coseismic deformation field of the M56.7 Northridge, California, earthquake of January 17, 1994, recorded by two radar satellites using interferometry, Geophys. Res. Lett. 23 (9), 969–972. Matsuoka M. & F. Yamazaki, (2001). Image processing of building damage detection due to disasters using SAR intensity images. Proc. of 31st Conference of the Remote Sensing Society of Japan, 269-270. Matsuoka M. & F. Yamazaki, (2002). Application of the Damage Detection Method Using SAR Intensity Images to Recent Earthquakes. Proc. Int. Geoscience and Remote Sensing Symp., IGARSS 2002. Matsuoka M. & F. Yamazaki, (2004). Building Damage Detection Using Satellite SAR Intensity Images for the 2003 Algeria and Iran Earthquakes. Proc. Int. Geoscience and Remote Sensing Symp., IGARSS 2004 McCloskey J., and Nalbant S., (2009). Near-real-time aftershock hazard maps. Nature Geoscience 2, 154 – 155, doi:10.1038/ngeo449 Miyazaki, S., Segall, P., Fukuda, J. & Kato, T., (2004). Space time distributions of afterslip following the 2003 Tokachi-oki earthquake: implications for variations in fault zone frictional properties, Geophys. Res. Lett., 31, doi:10.1029/2003GL019410. Mora, O., Mallorquí, J. J., & Broquetas, A. (2003). Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE on Transaction Geoscience and Remote Sensing, 41, 2243−2253. Moro, M., M. Saroli, S. Salvi, S. Stramondo, and F. Doumaz (2007). The relationship between seismic deformation and deep-seated gravitational movements during the 1997 Umbria-Marche (Central Italy) earthquakes, Geomorphology, 89, 297-307. Moro M., Chini M., Saroli M., Atzori S., Stramondo S., and Salvi S., Analysis of large, seismically induced, gravitational deformations imaged by high-resolution COSMO-SkyMed synthetic aperture radar. Under revision on Geology. Motagh, M., Hoffmann, J., Kampes, B., Baes, M., & Zschau, J., (2007). Strain accumulation across the Gazikoy–Saros segment of the North Anatolian Fault inferred from Persistent Scatterer Interferometry. Earth Planet. Sci. Lett., doi:10.1016/j.epsl.2007.01.003 Nof, R.N., Baer, G., Eyal, Y. & Novali, F., (2008). Current surface displacement along the Carmel Fault system in Israel from the InSAR stacking and PSInSAR. Israel Journal of Earth-Sciences, 57(2), 71-86. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space, Bull. Seism. Soc. Am., 75, 1135-1154. Parsons, T., and D. S. Dreger (2000). Static-stress impact of the 1992 Landers earthquake sequence on nucleation and slip at the site of the 1999 M 7.1 Hector Mine earthquake, southern California, Geophys. Res. Lett. 27, 1949–1952. Peltzer, G., Crampe, F., Hensley, S. & Rosen, P., (2001). Transient strain accumulation and fault interaction in the Eastern California Shear Zone,Geology, 29 (11), 975-978. Petersen, M., Cao, T., Campbell, K. & Frankel, A., (2007). Time-independent and time-dependent seismic hazard assessment for the state of California: uniform California earthquake rupture forecast model 1.0, Seismol. Res. Lett., 78(1), 99–109. Pollitz, F., (2005). Transient rheology of the upper mantle beneath central Alaska inferred from the crustal velocity field following the 2002 Denali earthquake, J. Geophys. Res., 110, B08407. Pollitz, F., Peltzer, G. & Bürgmann , R., (2000). Mobility of continental mantle: evidence from postseismic geodetic observations following the 1992 Landers earthquake. J. Geophys. Res., 105, 8035–8054. Pollitz, F., Wicks, C. & Thatcher, R., (2001). Mantle Flow Beneath a Continental Strike-Slip Fault: Postseismic Deformation After the 1999 Hector Mine Earthquake, Science, 293, 1814–1818. Prati, C., Ferretti, A., & Perissin, D., (2010). Recent advances on surface ground deformation measurement by means of repeated space-borne SAR observations, Journal of Geodynamics, 49, 3-4, 161-170 Pritchard, M.E., Ji, C. & Simons, M., (2006). Distribution of slip from 11Mw > 6 earthquakes in the northern Chile subduction zone, J. Geophys. Res., 111, doi:10.1029/2005JB004013. Rundle, J. B., Turcotte, D. L., Shcherbakov, R., Klein, W., and Sammis, C., (2003). Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems, Rev. Geophys., 41, 1019 Ryder, I., Parsons, B., Wright, T. J., and Funning, G. J., (2007). Postseismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations and modelling, Geophys. J. Int., 169, 1009-1027. Sakamoto M., Y. Takasago, K. Uto, S. Kakumoto & Y. Kosugi, (2004).Automatic Detection of Damaged Area of Iran Earthquake by High-Resolution Satellite Imagery. Proc. Geoscience and Remote Sensing Symp., IGARSS 2004. Salvi, S., Stramondo, S., Cocco, M., Tesauro, M., Hunstad, I., Anzidei, M., Briole, P., Baldi, P., Sansosti, E., Lanari, R., Doumaz, F., Pesci, A., & Galvani, A., (2000). Modeling coseismic displacements resulting from SAR Interferometry and GPS measurements during the 1997 Umbria-Marche seismic sequence,” J. Seismol., 4, 4, 479–499. Salvi, S., Vignoli, S., Serra, M., Bosi, V. (2009). Use of Cosmo-Skymed data for seismic risk management in the framework of the ASI-SIGRIS project. Proc. Geoscience and Remote Sensing Symp., IGARSS 2009, pp. II-921 - II-924, doi: 10.1109/IGARSS.2009.5418248 Salvi S., Vignoli S., Zoffoli S., & Bosi V., (2010). Use of satellite SAR data for seismic risk management: results from the pre-operational ASI-SIGRIS project. Proc. ESA Living Planet Symposium, European Space Agency Special Publication SP-686. Sandwell, D., Sichoix, L., Agnew, D., Bock, Y. & Minster, J.-B., (2000). Near real-time radar interferometry of the Mw 7.1 Hector Mine Earthquake. Geophys. Res. Lett. 27, 3101–-3104. Sansosti, E., Casu, F., Manzo, M. & Lanari, R., (2010). Space-borne radar interferometry techniques for the generation of deformation time series: An advanced tool for Earth's surface displacement analysis, Geophys. Res. Lett., 37, L20305, doi:10.1029/2010GL044379 Sarti, F., Briole, P., & Pirri, M., (2006). Coseismic Fault Rupture Detection and Slip Measurement by ASAR Precise Correlation Using Coherence Maximization: Application to a North–South Blind Fault in the Vicinity of Bam (Iran), IEEE Geoscience and Remote Sensing Letters, 3 (2), 187-191. Savage J.C., & Burford R.O., (1973). Geodetic determination of relative plate motion in central California: Journal of Geophysical Research, v. 78, p. 832–845, doi: 10.1029/JB078i005p00832. Schmidt, D. A., R. Bürgmann, R. M. Nadeau, & M. d’Alessio (2005). Distribution of aseismic slip rate on the Hayward fault inferred from seismic and geodetic data, J. Geophys. Res., 110, B08406, doi:10.1029/2004JB003397. Simons, M., Y. Fialko, and L. Rivera (2002). Coseismic deformation from the 1999 Mw 7.1 Hector Mine, California earthquake as inferred from InSAR and GPS observations, Bull. Seismol. Soc. Am., 92, 1390– 1402. Snoeij P., Attema E., Duesmann B., Rommen B., Floury N., Davidson M., Rosich B., (2010). Sentinel-1 Coverage and Revisit Capabilities. Proc. ESA Living Planet Symposium, European Space Agency Special Publication SP-686 Steacy, S., J. Gomberg, & M. Cocco (2005). Introduction to special section: Stress dependent seismic hazard, J. Geophys. Res., 110, B05S01, doi:10.1029/2005JB003692. Stein, R. S. (1999). The role of stress transfer in earthquake occurrence, Nature, 402, 605 –609. Stramondo, S., M. Tesauro, P. Briole, E. Sansosti, S. Salvi, R. Lanari, M. Anzidei, P. Baldi, G. Fornaro, A. Avallone, M. F. Buongiorno, G. Franceschetti, & E. Boschi, (1999). The September 26, 1997 Colfiorito, Italy, earthquakes: Modeled coseismic surface displacement from SAR interferometry and GPS. Geophys. Res. Lett., 26, 7, 883–886. Stramondo S., C. Bignami, M. Chini, N. Pierdicca, & A. Tertulliani, (2006). The radar and optical remote sensing for damage detection: results from different case studies. International Journal of Remote Sensing, 27, 20. Taylor, M. H. & Peltzer, G., (2006). Current slip rates on conjugate strike slip faults in Central Tibet using Synthetic Aperture Radar Interferometry, J. Geophys. Res., B12402, doi:10.1029/2005JB004014. Usai, S. (2003). A least squares database approach for SAR interferometric data. IEEE Transactions on Geoscience and Remote Sensing, 41(4), 753−760. Werner, C., Wegmuller, U., Strozzi, T., & Wiesmann, A. (2003). Interferometric point target analysis for deformation mapping. Proceedings of IGARSS '03, vol. 7. (pp. 4362−4364). Werninghaus R., (2006). The TerraSAR-X Mission. Proc. 6th European Conference on Synthetic Aperture Radar, Dresden, Germany. Weston, J., Ferreira, A. M. G., and Funning, G. J., (2010). Global compilation of InSAR earthquake source models: 1. Comparison with seismic catalogs, submitted to Journal of Geophysical Research. Wright, T. J., Parsons, B. E., Jackson, J. A., Haynes, M., Fielding, E. J., England, P. C., & Clarke, P. J., (1999). Source parameters of the 1 October 1995 Dinar (Turkey) earthquake from SAR interferometry and seismic bodywave modelling , Earth Planet. Sci. Lett., 172, pp.23-37. Wright, T. J., Parsons, B., & Fielding, E., (2001). Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry , Geophys. Res. Lett., 28, pp. 2117-2120. Wright, T. J., Lu, Z., & Wicks, C., (2003), Source model for the M-w 6.7, 23 October 2002, Nenana Mountain Earthquake (Alaska) from InSAR , Geophys. Res. Lett., 30, . doi:10.1029/2003GL018014 Wright, T., Lu, Z. & Wicks, C., (2004). Constraining the slip distribution and fault geometry of the Mw7.9, 2 November 2002, Denali Fault Earthquake with interferometric synthetic aperture radar and global positioning system data, Bull. seism. Soc. Am., 94(6B), S175–S189. Wright, T. J., Parsons, B., England, P. C., & Fielding, E. J., (2004a). InSAR observations of low slip rates on the major faults of western Tibet , Science, 305, pp.236-239. Wright, T. J., Parsons, B. E. & Lu, Z., (2004b). Toward mapping surface deformation in three dimensions using InSAR, Geophys. Res. Lett., 31, .doi:10.1029/2003GL018827 Xinjian, S. & Guohong, Z., (2007). A characteristic analysis of the dynamic evolution of preseismic-coseismic-postseismic interferometric deformation fields associated with the M7.9 Earthquake of Mani, Tibet in 1997. Acta Geologica Sinica (English Edition), 81(4), 587-592. Yin, Y. P., Wang, F. W. & Sun, P. (2009). Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides, 6, 139-152. Yonezawa C. & S. Takeuchi, (2001 ).Decorrelation of SAR data by urban damages caused by the 1995 Hoyogoken-nanbu earthquake. International Journal of Remote Sensing, 22, 8, 1585-1600. Zebker, H., Rosen, P., & Hensley, S., (1997). Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. Journal of Geophysical Research, 102, 7547–7563. Zebker, H. & Villasenor, J., (1992). Decorrelation in interferometric radar echoes. IEEE Transactions on Geoscience and Remote Sensing, 30, 950–959.en
dc.description.obiettivoSpecifico1.10. TTC - Telerilevamentoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.relation.issn0034-4257en
dc.relation.eissn1879-0704en
dc.contributor.authorSalvi, S.en
dc.contributor.authorStramondo, S.en
dc.contributor.authorFunning, G. J.en
dc.contributor.authorFerretti, A.en
dc.contributor.authorSarti, F.en
dc.contributor.authorMouratidis, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentUniversity of Californiaen
dc.contributor.departmentEuropean Space Agency – ESA/ESRINen
dc.contributor.departmentEuropean Space Agency – ESA/ESRINen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptUniversity of California-
crisitem.author.deptEuropean Space Agency, Frascati, Italy-
crisitem.author.deptSchool of Geology, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece-
crisitem.author.orcid0000-0002-7776-6544-
crisitem.author.orcid0000-0003-0163-7647-
crisitem.author.orcid0000-0003-1813-4878-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
RSE-D-11-00027R1_accepted.pdfAccepted manuscript417.68 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

39
checked on Feb 10, 2021

Page view(s) 50

208
checked on Apr 20, 2024

Download(s) 20

496
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric