Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7351
DC FieldValueLanguage
dc.contributor.authorallMoro, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallSaroli, M.; Dipartimento di Meccanica, Strutture, Ambiente e Territorio, University of Cassino, Cassino, Italyen
dc.contributor.authorallTolomei, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.contributor.authorallSalvi, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italiaen
dc.date.accessioned2012-01-17T11:54:09Zen
dc.date.available2012-01-17T11:54:09Zen
dc.date.issued2009en
dc.identifier.urihttp://hdl.handle.net/2122/7351en
dc.description.abstractAmong the causes of deep-seated gravitational slope deformations (DGSD), the most important is relief energy, which is closely related to the intensity of the active tectonic deformations, either at the regional scale or at the scale of a single active fault. We analyzed some examples of DGSD from the Eastern border of the Fucino basin, in the Central Apennines, where extensional tectonics has been active since the late Pliocene. Photogeological and field geomorphological analysis was performed to identify landforms typically associated with DGSD, such as counterslope scarps, double crests, trenches, and bulging slopes. These features are located on a mountain range at less than 1 km from the causative fault of the 1915 Avezzano earthquake. We used the SBAS Differential SAR Interferometry technique to measure the slow movements of the surface, and calculated differential vertical and horizontal ground velocities of 2–4 mm yr−1 during the period spanning from 1992 to 2001. The quantitative information on the kinematics of the deformation provided some inferences on the different processes responsible for the evolution of the observed DGSD. The displacement time series shows non-linear deformation trends at some locations, possibly correlated with a strong meteorological event. We speculate that DGSD in this area are normally subject to slow deformation, and that sudden slip along sliding surfaces (observed in excavations) may sporadically be triggered off by extreme meteorological or seismic events. Evidence of catastrophic collapse of previous DGSD along the same mountain slope reinforce this hypothesis.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofGeomorphologyen
dc.relation.ispartofseries/112 (2009)en
dc.subjectDInSARen
dc.subjectDeep Seated Gravitational Slope Deformationsen
dc.titleInsights on the kinematics of deep-seated gravitational slope deformations along the 1915 Avezzano earthquake fault (Central Italy), from time-series DInSARen
dc.typearticleen
dc.description.statusPublisheden
dc.description.pagenumber261-276en
dc.subject.INGV02. Cryosphere::02.02. Glaciers::02.02.03. Geomorphologyen
dc.identifier.doi10.1016/j.geomorph.2009.06.011en
dc.relation.referencesAgliardi, F., Crosta, G., Zanchi, A., 2001. Structural constraints on deep-seated slope deformation kinematics. Eng. Geol. 59, 83–102. Agnesi, V., Macaluso, T., Monteleone, S., Pipitone, G., SorrisoValvo, M., 1978. Tipi e dinamica delle deformazioni gravitative profonde in relazione alle strutture geologiche. I casi di Monte Genuardo e di Scodello (Sicilia occidentale). Boll. Soc. Geol. Ital. 108, 379–389. Amoruso, A., Crescentini, L., Scarpa, R., 1998. Inversion of source parameters from nearand far-field observations: an application to the 1915 Fucino earthquakes, central Apennines, Italy. J. Geophys. Res. 103, 29,989–29,999. Berardino, P., Fornaro, G., Lanari, R., Sansosti, E., 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 40, 2375-238. Bϋrgmann, R., Rosen, P.A., Fielding, E.J., 2000. Synthetic aperture radar interferometry to measure Earth's surface topography and its deformation. Annu. Rev. Earth Planet. Sci. 28, 169–209. Casu, F., Manzo, M., Lanari, R., 2006. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens. Environ. 102, 195–210. Cavinato, G.P., Carusi, C., Dall’Asta, M., Miccadei, E., Piacentini, T., 2002. Sedimentary and tectonic evolution of Plio-Pleistocene alluvial and lacustrine deposits of Fucino basin (central Italy). Sediment. Geol. 148, 29–59. Cendrero, A., Dramis, F., 1996. The contribution of landslides to landscape evolution in Europe. Geomorphology 15, 191–211. Chiaraluce, L., Ellsworth, W.L., Chiarabba, C., Cocco, M., 2003. Imaging the complexity of an active normal fault system: the 1997 Colfiorito (central Italy) case study. J. Geophys. Res. 108, 2294. Cipollari, P., Cosentino, D., Gliozzi, E., 1999. Extension and compression related basins in central Italy during the Messinian Lago-Mare event. Tectonophysics 315, 163–185. Cruden, D.M., Varnes, D.J., 1996. Landslides types and processes. In: Turner, A.K., Schuster, R.L. (Eds.), Landslides: Investigation and Mitigation, vol. 247. Transportation Research Board, National Academy of Sciences, Washington D.C., pp. 36–75. Special Report. D'Agostino, N., Giuliani, R., Mattone, M., Bonci, L., 2001. Active crustal extension in the central Apennines (Italy) inferred from GPS measurements in the interval 1994– 1999. Geophys. Res. Lett. 28, 2121. Doglioni, C., 1995. Geological remarks on the relationships between extension and convergent geodynamic settings. Tectonophysics 252, 253–267. Dramis, F., Sorriso-Valvo, M., 1994. Deep-seated gravitational slope deformations, related landslide and tectonics. Eng. Geol. 38, 231–243. Dramis, F., Farabollini, P., Gentili, B., Pambianchi, G., 1995. Neotectonics and large-scale gravitational phenomena in the Umbria–Marche Apennines, Italy. In: S laymaker, O. (Ed.), Steepland Geomorphology. J. Wiley & Sons Ltd., pp. 199–217. Finnegan, N.J., Pritchard, M.E., Lohman, R.B., Lundgren, P.R., 2008. Constraints on surface deformation in the Seattle, WA urban corridor from satellite radar interferometry time series analysis, Geophys. J. Int. 174, 29–41. Forlati, F., Gioda, G., Scavia, C., 2001. Finite element analysis of a deep-seated slope deformation. Rock Mech. Rock Eng. 34, 135–159. Galadini, F., 2006. Quaternary tectonics and large-scale gravitational deformations with evidence of rock-slide displacements in the Central Apennines (central Italy). Geomorphology 82, 201–228. Galadini, F., Galli, P., 1999. The Holocene paleoearthquakes on the 1915 Avezzano earthquake faults (central Italy): implications for active tectonics in central Apennines. Tectonophysics 308, 143–170. Galadini, F., Messina, P., 1994. Plio-Quaternary tectonics of the Fucino basin and surrounding areas (central Italy). G. Geol. 56, 73–99. Galadini, F., Galli, P., 2000. Active tectonics in the central Apennines (Italy) — input data for seismic hazard assessment. Nat. Hazards 22, 225–270. Galadini, F., Galli, P., Giraudi, C., Molin, D., 1995. Il terremoto del 1915 e la sismicita` della Piana del Fucino (Italia centrale). Boll. Soc. Geol. Ital. 114, 635–663. Galadini, F., Galli, P., Giraudi, C., 1997. Paleosismologia della Piana del Fucino (Italia centrale). Il Quaternario 10, 27–64. Giraudi, C., 1988. Evoluzione geologica della Piana del Fucino (Abruzzo) negli ultimi 30.000 anni. Il Quaternario 1, 131–159. González-Díez, A., Remondo, J., Díaz de Terán, J., Cendrero, A., 1999. A methodological approach for the analysis of the temporal occurrence and triggering factors of landslides. Geomorphology 30, 95–113. Gullà, G., Sorriso-Valvo, M., 1985. Deep-seated block slides and lateral spreads in Calabria. Intern. Symposium on Erosion, Flow and Disaster Prevention, Sept. 3–5, 1985, Tsukuba, Japan, pp. 311–316. Hanssen, R., 2001. Radar Interferometry: Data Interpretation and Error Analysis. Kluwer Acad., Netherlands. Huang, C.C., Lee, Y.H., Liu, H.P., Keefer, D.K., Jibson, R.W., 2001. Influence of surfacenormal ground acceleration on the initiation of the Jih-Feng-Erh-Shan landslide during the 1999 Chi-Chi, Taiwan, earthquake. Bull. Seismol. Soc. Am. 91, 953–958. Hutchinson, J.N., 1988. General report: morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. Proc. 5th Int Symp. On Landslides, Lausanne, vol. 1. A.A. Balkema, CH, pp. 3–35. Kilburn, C.R.J., Petley, D.N., 2003. Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy. Geomorphology 54, 21–32. Lanari, R., Lundgren, P., Manzo, M., Casu, F., 2004. Satellite radar interferometry time series analysis of surface deformation for LoS Angeles, California. Geophys. Res. Lett. 31, L23613. Malinverno, A., Ryan, W.B.F., 1986. Extension in the Tyrrhenian sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 5, 227–245. Mariucci, M.T., Amato, A., Montone, P., 1999. Recent tectonic evolution and present stress in the northern Apennines (Italy). Tectonics 18, 108–118.Massonnet, D., Feigl, K.L., 1998. Radar interferometry and its application to changes in the earth's surface. Rev. Geophys. 36, 441–500. Meletti, C., Patacca, E., Scandone, P., 1995. Il sistema compressione distensione in Appennino. In: Bonardi, G., De Vivo, B., Gasparini, P., Vallario, A. (Eds.), Cinquanta Anni di Attività Didattica e Scientifica del Prof. Felice Ippolito, Naples, pp. 361–370. Meletti, C., Patacca, E., Scandone, P., 2000. Construction of a seismotectonic model: the case of Italy. Pure Appl. Geophys. 157, 11–35. Moro, M., 2007. Indagini geologiche e geofisiche applicate allo studio delle relazioni geometriche e cinematiche tra faglie attive e deformazioni gravitative profonde di versante (DGPV). Ph.D. Thesis, Università degli Studi di Roma “La Sapienza”. Moro, M., Saroli, M., Salvi, S., Stramondo, S., Doumaz, F., 2007. The relationship between seismic deformation and deep-seated gravitational movements during the 1997 Umbria–Marche (Central Italy) earthquakes. Geomorphology 89, 297–307. Oddone, E., 1915. Gli elementi fisici del grande terremoto marsicano - fucense del 13 gennaio 1915. Boll. Soc. Sismol. Ital. 19, 71–216. Onida, M., 2001. Deformazioni gravitative profonde: stato delle conoscenze e progresso delle ricerche in Italia. In: Pasquarè, G. (Ed.), Tettonica recente e instabilità di versante nelle Alpi centrali. CNR, Istituto per la Dinamica dei Processi Ambientali, Milano, Italy, pp. 35–74. Patacca, E., Scandone, P., 2001. Late thrust propagation and sedimentary response in the thrust-belt-foredeep system of the southern Apennines (Pliocene–Pleistocene). In: Vai, G.B., Martini, I.P. (Eds.), Anatomy of an Orogen: the Apennines and Adjacent Mediterranean Basins. Kluwer Academic Publishers, Dordrecht, pp. 401–440. Patacca, E., Sartori, R., Scandone, P., 1990. Tyrrhenian basin and apenninic arcs: kinematic relations since Late Tortonian times. Mem. Soc. Geol. It. 45, 425–451. Radbruch-Hall, D., Varnes, D.J., Savage,W.Z.,1976. Gravitational spreading of steep-sides ridges (“Sackung”) in Western United States. IAEG Bull. 14, 23–35. Radbruch-Hall, D., Varnes, D.J., Colton, R.B., 1977. Gravitational spreading of steep-sided ridges (“Sackung”) in Colorado. J. Res. U.S. Geol. Surv. 5, 359–363. Royden, L., Patacca, E., Scandone, P., 1987. Segmentation and configuration of subducted lithosphere in Italy: an important control on thrust-belt and foredeep-basin evolution. Geology 15, 714–717. Salvi, S., Cinti, F.R., Colini, L., D'Addezio, G., Doumaz, F., Pettinelli, E., 2003. Investigation of the active Celano-L'Aquila fault system, Abruzzi (central Apennines, Italy) with combined ground-penetrating radar and palaeoseismic trenching. Geophys. J. Int. 155, 805–818. Saroli, M., Stramondo, S., Moro, M., Doumaz, F., 2005. Movements detection of Deep Seated Gravitational Deformations by means of InSAR data and Photogeological interpretation: northern Sicily case study. Terranova 17, 35–43. Savage, W.Z., Varnes, D.J., 1987. Mechanics of gravitational spreading of steep-sides ridges (sacking). IAEG Bull. 35, 31–36. Sirangelo, B., Braca, G., 2004. Identification of hazard conditions for mudflow occurrence by hydrological model. Application of FLaIR model to Sarno warning system. Eng. Geol. 73, 267–276. Sorriso-Valvo, M., 1995. Considerazioni sul limite tra deformazione gravitativi profonda di versante e frana. Mem. Soc. Geol. Ital. 50, 179–185. Ter Stepanian, G., 1966. Type of depth creep of slopes in rock masses. Probl. Geomeh. 3, 49–69. Tibaldi, A., Rovida, A., Corazzato, C., 2004. A giant deep-seated slope deformation in the Italian Alps studied by paleoseismological and morphometric techniques. Geomorphology 58, 27–47. Varnes, D.J., Radbruch-Hall, D., Savage, W.Z., 1989. Topographic and structural conditions in area of gravitational spreading of ridges in the western United States. U.S. Geol. Surv. Prof. Paper 1496, 1–28. VELISAR Working Group, 2006. Ground velocity maps of Italian seismogenic areas. http://kharita.rm.ingv.it/gmaps/vel, Istituto Nazionale di Geofisica e Vulcanologia — Rome, Italy. Wright, T.J., Parsons, B.E., Lu, Z., 2004. Toward mapping surface deformation in three dimensions using InSAR.Geophys. Res. Lett. 31 (1), L01607. doi:10.1029/2003GL018827. Zischinsky, U., 1966. On the deformation of high slopes. Proc. Ist Conf. Int. Soc. Rock Mech., Lisbon, Sect., vol. 2, pp. 179–185. Zischinsky, U., 1969. Uber Sackungen. Rock Mech. I, 30–52.en
dc.description.obiettivoSpecifico1.10. TTC - Telerilevamentoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMoro, M.en
dc.contributor.authorSaroli, M.en
dc.contributor.authorTolomei, C.en
dc.contributor.authorSalvi, S.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentDipartimento di Meccanica, Strutture, Ambiente e Territorio, University of Cassino, Cassino, Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptUniversity of Cassino-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.orcid0000-0002-3408-8034-
crisitem.author.orcid0000-0001-9499-3960-
crisitem.author.orcid0000-0001-7378-0712-
crisitem.author.orcid0000-0002-7776-6544-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent02. Cryosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Moro et al. Geomorphology.pdf20.92 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

17
checked on Feb 10, 2021

Page view(s) 5

398
checked on Mar 27, 2024

Download(s)

54
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric