Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7347
DC FieldValueLanguage
dc.contributor.authorallQuattrocchi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallPizzi, A.; DIGATen
dc.contributor.authorallGori, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallBoncio, P.; University G. d'Annunzioen
dc.contributor.authorallVoltattorni, N.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallSciarra, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2012-01-17T11:43:29Zen
dc.date.available2012-01-17T11:43:29Zen
dc.date.issued2012en
dc.identifier.urihttp://hdl.handle.net/2122/7347en
dc.description.abstractField investigations performed in the epicentral area within the days following the April 6, 2009 L’Aquila earthquake (Mw 6.3) allowed several researchers to detect evidence of coseismic ground rupturing. This has been found along the Paganica Fault and next to minor synthetic and antithetic structures. Although a lot of geo-structural and geophysical investigations have been recently used to characterize these structures, the role of the different fault segments – i.e. as primary or secondary faults – and their geometrical characteristics are still a matter of debate. In light of this, we have here integrated data derived from fluid geochemistry analyses carried out soon after the main-shock with field structural investigations. In particular, we compared structural data with CO2 and CH4 flux measurements, as well as with radon and other geogas soil concentration measurements (see details in Voltattorni et al., this issue). Our aim was to better define the structural features and complexities of the activated Paganica Fault. Here, we show that, in the near rupture zone, “geochemical signatures” could be a powerful method to detect earthquake activated fault segments, even if they show subtle or absent geological-geomorphological evidence and are still partially “blind”. In detail, a clear degassing zone was identified just along the San Gregorio coseismic fracture zone – i.e., the surface deformation related to the "blind" San Gregorio normal fault. Indeed, CO2 and CH4 flux maximum anomalies were aligned along the Northern sector of the San Gregorio fault, in the Bazzano industrial area. This area also corresponds to the depocenter of the maximum coseismic deformation highlighted by DInSAR analysis (ATZORI ET AL., 2009). Here, maximum radon concentration values in soil gases were also found. As a whole, these results corroborates the hypothesis of BONCIO ET AL. (2010) who suggested that the San Gregorio fault probably represents a synthetic splay of the Paganica Fault, being thus connected with the main seismogenic fault at depth.Moreover, another maximum in CO2 flux anomaly has been measured along the southernmost tip of the earthquake rupture zone, close to the San Gregorio village. Minor or absent soil gas and flux anomalies were instead located along antithetic structures as the Bazzano and Fossa faults, while some anomalies in CO2 flux or radon concentration in groundwater have been found within transfer zones, such as the step-over zone between the central segment of the Paganica fault and the San Gregorio fault and in the zone which separates the Paganica fault from the i) Middle Aterno Valley- Subequana Valley and ii) Barisciano-S. Pio delle Camere-Navelli fault systems. Our results corroborate the power of fluid geochemistry in investigating the structural features of active tectonic structures, being particularly helpful in discerning blind faults. More specifically, our data suggest that the youngest fault splays, as in the case of the San Gregorio fault, may represent preferential sites for degassing.en
dc.language.isoEnglishen
dc.relation.ispartofItalian Journal of Geosciencesen
dc.relation.ispartofseries3/131 (2012)en
dc.subject2009 L’Aquila earthquake; fluid geochemistry; active fault zones, gas surveying, geogas anomaliesen
dc.titleThe contribution of fluid geochemistry to define the structural pattern of the 2009 L’Aquila seismic sourceen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber448-458en
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical explorationen
dc.identifier.doi10.3301/IJG.2012.31en
dc.relation.referencesANZIDEI M., BOSCHI E., CANNELLI V., DEVOTI R., ESPOSITO A., GALVANI A., MELINI D., PIETRANTONIO G., RIGUZZI F., SEPE F., SERPELLONI E. (2009). Coseismic deformation of the destructive April, 6, L’Aquila earthquake (Central Italy) from GPS data. Geoph. Res. Lett., 36, L17307 doi:10.1029/2009GL039145. ATZORI S., HUNSTAD I., CHINI M., SALVI S., TOLOMEI C., BIGNAMI C., STRAMONDO S., TRANSATTI E., ANTONIOLI A. AND BOSCHI E. (2009). Finite fault inversion of DInSAR coseismic displacement of the 2009 L’Aquila earthquake (Central Italy). GRL, 36, LI5350, doi:10.1029/2009GL039293. BAGNAIA, R., D’EPIFANIO, A., AND S. SYLOS LABINI (1992). Aquila and Subequan basins: an example of Quaternary evolution in central Apennines, Italy. Quaternaria Nova II, 187-209. AVALLONE A., MARZARIO M., CIRELLA A., PIATANESI A., ROVELLI A., D’ALESSANDRO C., D’ANASTASIO E., D’AGOSTINO N., (2009). 10 Hz GPS seismology for moderate magnitude earthquakes, the case of the Mw=6.3, l’Aquila event. Eos Trans. AGU, 90(52), Fall Meet. Suppl., Abstract U13C-06, 2009 BASILI R., VALENSISE G., VANNOLI P., BURRATO P., FRACASSI U., MARIANO M., TIBERTI M., BOSCHI E. (2008). The Database of Individual Sesimogenic Sources (DISS), version 3: Summarizing 20 years of research on Italy's earthquake geology. Tectonophysics, 453, 20-43. doi:10.1016/j.tecto.2007.04.014. BERTINI T., BOSI C. (1993). La tettonica quaternaria della conca di Fossa (L’Aquila). Il Quaternario, 6, 293-314.BIANCHI I., CHIARABBA C., AGOSTINETTI PIANA N. (2010). Control of the 2009 L’Aquila earthquake, central Italy, by a high-velocity structure: a receiver function study. J.G.R., 115, B12326, doi:10.1029/2009JB007087. BONCIO P, LAVECCHIA G, PACE B. (2004. Defining a model of 3D seismic modelling sources for seismic hazard assessment applications: the case of central Apennines. J. of Seismology, 8, 407-425. BONCIO P., PIZZI A., BROZZETTI F., POMPOSO G., LAVECCHIA G., DI NACCIO D. (2010). Cosismic ground deformation of the 6 April (2009) l'Aquila earthquake (Central Italy, Mw 6.3). Geophys Res Lett, 37, L06308, doi: 1029/2010GL042807. BONCIO P., PIZZI A., CAVUOTO G., MANCINI M., PIACENTINI T., MICCADEI E., CAVINATO G.P., PISCITELLI S., GIOCOLI A., FERRETTI G., DE FERRARI R., GALLIPOLI M.R., MUCCIARELLI M., DI FIORE V., FRANCESCHINI A., PERGALANI F., NASO G. & WORKING GROUP MACROAREA3 (2011). Geological and geophysical characterisation of the Paganica - San Gregorio area after the April 6, 2009 L’Aquila earthquake (Mw 6.3, central Italy): implications for site response. Boll. Geof. Teor. Appl., 52(3), DOI 10.4430/bgta0014. BRIOLE P., AVALLONE A., ANZIDEI M. (2009). GPS seismology and the Mw=6.3, April, 6, 2009, l’Aquila earthquake. Nature, 2009. CALDERONI G, DI GIOVANBATTISTA R, BURRATO P., VENTURA G. (2009). A seismic sequence from Northern Apennines (Italy) provides new insight on the role of fluids in the active tectonics of accretionary wedges. Earth Plan Sci Lett, 2009, 281: 99-109, doi:10.1016/j.epsl.2009.02.015. CARAPEZZA M.L., TARCHINI L. (2007). Accidental gas emission from shallow pressurized aquifers at Alban Hills volcano (Rome, Italy): geochemical evidence of magmatic degassing ? J. Volcanol. Geotherm. Res., 165, 5-16. CHIARABBA C., AMATO A., ANSELMI M., BACCHESCHI P., BIANCHI I., CATTANEO M., CECERE G. P., CHIARALUCE L., CIACCIO M.G., DE GORI P., DE LUCA G., DI BONA M., DI STEFANO R., FAENZA L., GOVONI A., IMPROTA L., LUCENTE F.P., MARCHETTI A., MARGHERITI L., MELE F., MICHELINI A., MONACHESI G., MORETTI M., PASTORI M., PIANA AGOSTINETTI N., PICCININI D., ROSSELLI P., SECCIA D., VALOROSO L. (2009). The 2009 L’Aquila (central Italy) MW6.3 earthquake: Main shock and aftershocks. Geophys. Res. Lett., 36, L18308, doi:10.1029/2009GL039627. CHELONI D, D’AGOSTINO N, D’ANASTASIO E, AVALLONE A, MANTENUTO S, GIULIANI R, MATTONE M, CALCATERRA S, GAMBINO P, DOMINACI D, RADICIONI F, CASTELLINI G. (2010). Coseismic and initial post-seismic slip of the 2009 Mw 6.3 L’Aquila earthquake, from GPS measurements. Geoph Res. Lett, doi:10.1111/j.1365-246X.2010.04584.x.CIRELLA A, PIATANESI A, COCCO M, TINTI E, SCOGNAMIGLIO L, MICHELINI A, LOMAX A, BOSCHI E. (2009). Rupture history of the 2009 L'Aquila (Italy) earthquake from non-linear joint inversion of strong motion and GPS data. Geophys Res. Lett., 36, L19304, doi:1029/2009GL039795. COPPERSMITH K.J. & YOUNGS R.R. (2000). Data needs for probabilistic fault displacement hazard analysis, J. of Geodynamics, 29, 329-343. DI LUCCIO F, VENTURA G, DI GIOVANBATTISTA R, PISCINI A, CINTI R. (2010). Normal Faults and thrusts reactivated by deep fluids: the 6 April Mw 6.3 L'Aquila earthquake, central Italy. Geophys Res Lett, 115, B06315, doi: 1029/2009GLJB007190. DISS WORKING GROUP (2007). Database of Individual Seismogenic Sources, Version 3.0.3: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas, http://diss.rm.ingv.it/diss/, © INGV 2007. EMERGEO WORKING GROUP. (2010). Evidence for surface rupture associated with the Mw 6.3 L'Aquila earthquake sequence of April 2009, Central Italy. Terra Nova , doi:1111/j.1365- 3121-2009-00915.x: 43-51. ETIOPE G., CALCARA M., QUATTROCCHI F. (1997). Seismo-geochemical algorithms for earthquake prediction: an overview. Annals of Geophysics, XL, 6, p. 1483-1492. FALCUCCI E., GORI S., MORO M., PISANI A.R., MELINI D., GALADINI F., FREDI P. (2011) - The 2009 L’Aquila earthquake (Italy): what next in the region? Hints from stress diffusion analysis and normal fault activity. Earth Planet. Sci. Lett., 305, 350-358. FALCUCCI E., GORI S. , PERONACE E.,FUBELLI F., MORO M., SAROLI M., GIACCIO B., MESSINA P. , NASO G., SCARDIA S., SPOSATO A. (2009). The Paganica Fault and Surface Coseismic Ruptures Caused by the 6 April 2009 Earthquake (L’Aquila, Central Italy). Seismological Research Letters, 80, 6, 940-950. GALLI P., GIACCIO B. & MESSINA P. (2010). The 2009 central Italy earthquake seen through 0.5 Myr-long tectonic history of the L’Aquila faults system. Quaternary Science Reviews, 29, 3768-3789. GIACCIO B., GALLI P., MESSINA P., SCARDIA G., FALCUCCI E., GALADINI F., GORI S., PERONACE E., SPOSATO A., ZUPPI G.M. (2011). Quaternary tectonics and sedimentary evolution of the L'Aquila 2009, meso-seismic region (Central Apennines): stratigraphic, paleomagnetic and 40Ar/39Ar constraints. Geoitalia Proceedings, VIII forum italiano di Scienze della Terra. Torino, 19-23 settembre 2011, p. 165.FRIMA C., MORETTI I., BROSSE E., QUATTROCCHI F., PIZZINO L. (2005). Can diagenetic processes influence the short term hydraulic behaviour evolution of a fault. Oil & Gas Science and Technology, 60 (2), 213-230. HALLER K., BASILI R. (2011). Developing Seismogenic Source Models Based on geological fault data. Seismological Research letters, 82 (4), 519-525. LUCENTE F.P., DE GORI P., MARGHERITI L., PICCININI D., DI BONA M., CHIARABBA C. (2010). Temporal variation of seismic velocity and anisoptropy before the 2009 Mw 6.3 L’Aquila earthquake, Italy, Geology, 38, 1015-1018. MANCINI C., QUATTROCCHI F., GUADONI C., PIZZINO L., PORFIDIA B. (2000). 222Rn study throughout different seismotectonical areas: comparison between different techniques for discrete monitoring. Annals of Geophysics, 43 (1), 31-60. MESSINA P., GALLI P., GIACCIO B. (2011). Comment on ‘Insights from the Mw 6.3, 2009 L’Aquila earthquake (central Apennines) to unveilnewseismogenic sources through their surface signature: the adjacent San Pio Fault’ by Bucci et al. (2011). Terre Nova, 23, 280-282. MICHETTI A.M., FERRELI L., ESPOSITO E., PORFIDO S., BLUMETTI A.M., VITTORI E., SERVA L. & ROBERTS G.P. (2000). Ground effects during the September 9, 1998, Mw=5.6, Lauria earthquake and the seismic potential of the aseismic Pollino region in Southern Italy. Seis. Res. Letts. 71, 31–46. MILLER S.A., COLLETTINI C, CHIARALUCE M, COCCO M, BARCHI M, KAUS (2004). Aftershocks driven by a high-pressure CO2 source at depth. Nature, 427: 724-727, doi:10.1038/nature02251. PASTORI M., PICCININI D., VALOROSO L., WUESTEFELD A., ZACCARELLI L., BIANCO F., KENDALL M., DI BUCCI D., MARGHERITI L., BARCHI M.R., (in press). Crustal fracturing field and presence of fluid as revealed by seismic anisotropy: case histories from seismogenic areas in the Apennines (Italy). Bollettino di Geofisica Teorica ed Applicata. PINAULT, J. L. & BAUBRON, J. C. (1997). Signal processing of diurnal and semidiurnal variations in radon and atmospheric pressure: A new tool for accurate in situ measurement of soil gas velocity, pressure gradient, and tortuosity. Journal of Geophysical Research–Solid Earth, 102, 18101–18120. PIZZI A, GALADINI F. (2009). Pre-existing cross-structures and active fault segmentation in the Northern-central Apennines. Tectonophysics, 476: 302-319, doi:10.1016/J.tecto2009.03.018. PIZZINO L., BURRATO P., QUATTROCCHI F. VALENSISE G. (2004). Geochemical signature of large active faults: the example of the 5 February 1783, Calabrian Earthquake. J. of Seismology, 8, 363-380.QUATTROCCHI F (1999). In search of evidences of deep fluid discharges and pore pressure evolution in the crust to explain the seismicity style of Umbria-Marche 1997-98 seismic sequence (Central Italy). Annals of Geophysics, 42 (4), 609-636. QUATTROCCHI F., PIK R., ANGELONE M., BARBIERI M., CONTI M., GUERRA M., LOMBARDI S., MARTY B., PIZZINO L., SACCHI E., SCARLATO P., ZUPPI G.M. (2000 A). Geochemical changes at the Bagni di Triponzo thermal spring, during the Umbria-Marche 1997-98 seismic sequence. J. of Seismology, 4, 567-587. QUATTROCCHI F., DI STEFANO G., PIZZINO L., PONGETTI F., ROMEO G., SCARLATO P., SCIACCA U., URBINI G. (2000 B). The Geochemical Monitoring System (GMS II) prototype installed at the Acqua Difesa well (Belpasso, CT) in the etna region, addressed to seismic and volcanic surveillance: first data during the 1999 volcanic-seismic crisis. J.Volc.Geoth. Res., 101, 273- 306. QUATTROCCHI F., BUTTINELLI M., CANTUCCI B., CINTI D., GALLI G., GASPARINI A., MAGNO L., PIZZINO L., SCIARRA A., VOLTATTORNI N. (2009). Geochemical anomalies during the 2009 l’Aquila seismic sequence (Central Italy): transverse lineaments inside the activated segments ?. Proceedings of the ASST Intern. Confer. “Active Tectonic Studies and earthquake Hazard Assessment in Syria and Neighboring Countries”, Damascus-Syria, 17-19 November, 2009, pp. 69-71. QUATTROCCHI F., BUTTINELLI M., CANTUCCI B., CINTI D., GALLI G., GASPARINI A., MAGNO L., PIZZINO L., SCIARRA A., VOLTATTORNI N. (2010). Very slow leakage of CO2, CH4 and radon along the main activated faults of the strong L’Aquila earthquake (Magnitude 6.3, Italy) ? Implications for risk assessment monitoring tools & public acceptance of CO2 and CH4 underground storage. Proceedings GHGT-10, Amsterdam, September 2010. RICHON, P., KLINGER, Y., TAPPONNIER, P., LI, C.-X., VAN DER WOERD, J. & PERRIER, F. (2010). Measuring radon flux across active faults: Relevance of excavating and possibility of satellite discharges, Radiat. Meas., 45, 211-218. ROBERTS, G. P., B. RAITHATHA, G. SILEO, A. PIZZI, S. PUCCI, J. F. WALKER, M.WILKINSON, K. MCCAFFREY, R. PHILLIPS, A. M. MICHETTI, L. GUERRIERI, A. M. BLUMETTI, E. VITTORI, P. SAMMONDS, P. COWIE, P. GALLI, AND R. WALTERS (2010). Shallow subsurface structure of the 2009 April 6 Mw 6.3 L’Aquila earthquake surface rupture at Paganica, investigated with ground-penetrating radar, Geoph. J. Int. 183, 774–790, doi 10.1111/j.1365- 246X.2010.04713.x. SALVI S., QUATTROCCHI F., ANGELONE M., BRUNORI C.A., BILLI A., BUONGIORNO F., DOUMAZ F., FUNICIELLO R., GUERRA M., LOMBARDI S., MELE G., PIZZINO L., SALVINI F. (2000). A multidisciplinary approach to earthquake research: implementation of a Geochemical Geographic Information System for the Gargano site, Southern Italy. Natural Hazard, 20 (1), 255-278. SCOGNAMIGLIO L., TINTI E., NICHELINI A., DREGER D.S: CIRELLA A., COCCO M., MAZZA S., PIATANESI A. (2010). Fast determinations of moment tensors and rupture history: what has been learned from the April 6, 2009 L’Aquila earthquake sequence ?. Seismol. Res. Lett. 81, 892-906, doi: 10,1785/ gssrl.81.6.892. TANSI, C., TALLARICO, A., IOVINE, G., FOLINO GALLO, M., FALCONE, G. (2005). Interpretation of radon anomalies in seismotectonic and tectonic-gravitational settings: The south-eastern Crati graben (Northern Calabria, Italy). Tectonophysics, 396, 181–193. VALENSISE G. & PANTOSTI D. EDS. (2001). Database of potential sources for earthquakes larger the M 5.5 in Italy, Annali di Geofisica, 44, suppl. 1 with CD-ROM. VOLTATTORNI N., SCIARRA A., CARAMANNA G., CINTI D., PIZZINO L., QUATTROCCHI F. (2009). Gas geochemistry of natural analogues for the studies of geological CO2 sequestration. Applied Geochemistry, 24, 1339-1346. WALTERS R.J., ELLIOTT J.R., D’AGOSTINO N., ENGLAND P.C., HUNSTAD I., JACKSON J.A:, PARSONS B., PHILLIPS R.J., ROBERTS G. (2009). The 2009 L’Aquila earthquake (Central Italy): a source mechanism and implication for seismic hazard. GRL, 36, LI7312, doi:10.1029/2009GL039337.en
dc.description.obiettivoSpecifico4.5. Studi sul degassamento naturale e sui gas petroliferien
dc.description.journalTypeJCR Journalen
dc.description.fulltextpartially_openen
dc.contributor.authorQuattrocchi, F.en
dc.contributor.authorPizzi, A.en
dc.contributor.authorGori, S.en
dc.contributor.authorBoncio, P.en
dc.contributor.authorVoltattorni, N.en
dc.contributor.authorSciarra, A.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentDIGATen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentUniversity G. d'Annunzioen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDIGAT-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptDipartimento DiSPUTer, Università di Chieti-Pescara, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-7822-1394-
crisitem.author.orcid0000-0002-5196-4956-
crisitem.author.orcid0000-0002-7074-3059-
crisitem.author.orcid0000-0002-3940-8383-
crisitem.author.orcid0000-0003-3767-3105-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Article published / in press
Files in This Item:
File Description SizeFormat
Quattrocchi_submission.pdfmain article2.74 MBAdobe PDFView/Open
IJG aquila soil gas Quattrocchi.pdf19.68 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations

10
checked on Feb 10, 2021

Page view(s) 20

354
checked on Apr 17, 2024

Download(s) 50

1,301
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric