Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7310
DC FieldValueLanguage
dc.contributor.authorallConsolini, G.; INAF – Istituto di Fisica dello Spazio Interplanetario, 00133 Roma, Italyen
dc.contributor.authorallDe Michelis, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.date.accessioned2012-01-13T09:19:59Zen
dc.date.available2012-01-13T09:19:59Zen
dc.date.issued2011-12-23en
dc.identifier.urihttp://hdl.handle.net/2122/7310en
dc.description.abstractOver the past few decades scientists have shown growing interest in space plasma complexity and in understanding the turbulence in magnetospheric and interplanetary media. At the beginning of the 1980s, Yu. L. Klimontovich introduced a criterion, named S-Theorem, to evaluate the degree of order in far-from-equilibrium open systems, which applied to hydrodynamic turbulence showed that turbulence flows were more organized than laminar ones. Using the same theorem we have evaluated the variation of the degree of self-organization in both Alfv´enic and non-Alfv´enic turbulent fluctuations with the radial evolution during a long time interval characterized by a slow solar wind. This analysis seems to show that the radial evolution of turbulent fluctuations is accompanied by a decrease in the degree of order, suggesting that, in the case of slow solar wind, the turbulence decays with radial distance.en
dc.language.isoEnglishen
dc.publisher.nameCopernicus Publicationsen
dc.relation.ispartofAnnales Geophysicaeen
dc.relation.ispartofseriesspecial issue/29 (2011)en
dc.subjectInterplanetary physics (Solar wind plasma)en
dc.subjectSpace plasma physics (Turbulence)en
dc.titleRelative ordering in the radial evolution of solar wind turbulence: the S-Theorem approachen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber2317-2326en
dc.identifier.URLwww.ann-geophys.net/29/2317/2011/en
dc.subject.INGV01. Atmosphere::01.03. Magnetosphere::01.03.05. Solar variability and solar winden
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.04. Statistical analysisen
dc.identifier.doi10.5194/angeo-29-2317-2011en
dc.relation.referencesBadii, R. and Politi, A.: Complexity: hierarchical structures and scaling in physics, Cambridge University Press, 1997. Bavassano, B., Dobrowolny, M., Fanfoni, G., Mariani, F., and Ness, N. F.: Radial evolution of power specta of interplanetary Alfvnic turbulence, J. Geophys. Res., 87, 3617–3622, doi:10.1029/JA087iA05p03617, 1982a. Bavassano, B., Dobrowolny, M., Mariani, F., and Ness, N. F.: Statistical properties of MHD fluctuations associated with high-speed streams from Helios 2 observations, Solar Phys., 78, 373–384, doi:10.1007/BF00151617, 1982b. Bavassano, B., Pietropaolo, E., and Bruno, R.: Alfv´enic turbulence in polar wind: A statisical study on cross-helicity and residual energy variations, J. Geophys. Res., 105, 12697–12704, doi:10.1029/2000JA900004, 2000. Borovsky, J. E.: Flux tube texture of the solar wind: Strands of the magnetic carpet at 1AU?, J. Geophys. Res., 113, A08110, doi:10.1029/2007JA012684, 2008. Bruno, R. and Carbone, V.: The solar wind as a turbulence laboratory, Living Rev. Sol. Phys., 2, 4, 2005. Bruno, R., Carbone, V., Veltri, P., Pietropaolo, E., and Bavassano, B.: Identifying intermittency events in the solar wind, Planet. Space Sci., 49, 1201–1210, doi:10.1016/S0032-0633(01)00061- 7, 2001. Bruno, R., Bavassano, B., D’Amicis, R., Carbone, V., Sorriso- Valvo, L., and Pietropaolo, E.: On the radial evolution of Alfv´enic turbulence in the solar wind, Space Sci. Rev., 122, 321– 328, doi:10.1007/s11214-006-5232-8, 2006. Consolini, G.: Relative degree of order in radial evolution of solar wind fluctuations, in: 12th International Solar Wind Conference, edited by: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., and Pantellini, F., AIP Conf. Proc., 1216, 120–123, 2010. Consolini, G., Bavassano, B., and De Michelis, P.: A probabilistic approach to heterogeneity in space plasmas: the case of magnetic field intensity in solar wind, Nonlin. Processes Geophys., 16, 265–273, doi:10.5194/npg-16-265-2009, 2009. Ebeling, W.: On the entropy of dissipative and turbulent structures, Phys. Scripta, T25, 238–242, doi:10.1088/0031- 8949/1989/T25/043, 1989. Ebeling, W. and Klimontovich, Yu. L.: Self Organization and Turbulence in Liquids, Teubner, Leipzig, 1984. Freeman, J. W., Totten, T., and Ayra, S.: A determination of polytropic index of the free streaming solar wind using improved temperature and density radial power-law indices, Eos Trans. AGU, 73, 238, 1992. Goldstein, B. E., Neugebauer, M., Phillips, J. L., Bame, S., Gosling, J. T., McComas, D., Wang, Y.-M., Sheeley, N. R., and Suess, S. T.: ULYSSES plasma parameters: latitudinal, radial, and temporal variations, Astron. & Astrophys., 316, 296–303, 1996. Horbury, T. S., Balogh, A., Forsyth, R. J., and Smith, E. J.: Anisotropy of inertial range turbulence in the polar heliosphere, Geophys. Res. Lett., 22, 3405–3408, doi:10.1029/95GL03012, 1995. Klimontovich, Yu. L.: Entropy decrease in process of self organization. S-Theorem, Pis’ma v ZhTP, 9, 1089–1093, 1983. Klimontovich, Yu. L.: Entropy and entropy production in the laminar and the turbulent flows, Pis’ma v ZhTP, 10, 80–83, 1984. Klimontovich, Yu. L.: Turbulent Motion and the Sructure of Chaos. A new approach to the statistical theory of open systems, Kluwer Academic Publishers, 1991. Klimontovich, Yu. L.: Statistical Theory of Open Systems, Vol.1, Kluwer Academic Publishers, 1995. Klimontovich, Yu. L.: Is turbulent motion chaos or order? Is the hydrodynamic or kinetic description of turbulent motion more natural?, Physica B, 228, 51–62, doi:10.1016/S0921-4526(96)00338- 9, 1996. Mariani, F., Bavassano, B., Villante, U., and Ness, N. F.: Variations of the Occurrence Rate of Discontinuities in the Interplanetary Magnetic Field, J. Geophys. Res., 78, 8011–8022, doi:10.1029/JA078i034p08011, 1973. Marino R., Sorriso-Valvo, L., Carbone, V., Noullez, A., Bruno, R., and Bavassano, B.: Heating the solar wind by a magnetohydrodynamic turbulent energy cascade, Astrophys. J., 677, L71–L74, doi:10.1086/587957, 2008. McCracken, K. G. and Ness, N. F.: The Collimation of Cosmic Rays by the Interplanetary Magnetic Field, J. Geophys. Res., 71, 3315–3318, doi:10.1029/JZ071i013p03315, 1966. Ness, N. F., Scearce, C. S., and Cantarano, S.: Preliminary Results from the Pioneer 6 Magnetic Field Experiment, J. Geophys. Res., 71, 3305–3313, doi:10.1029/JZ071i013p03305, 1966. Nicolis, G. and Nicolis, C.: Foundations of Complex Systems. Nonlinear Dynamics, Statistical Physics, Information and Prediction, World Scientific Publishing Co. Pte. Ltd., 2007. Prigogine, I. and Stengers, I.: Order out of chaos, Heinemamm, London, 1984. Roberts, D. A., Goldstein, M. L., Klein, L. W., and Matthaeus, W. H.: Origin and evolution of fluctuations in the solar wind: Helios observations and Helios-Voyager comparisons, J. Geophys. Res., 92, 12023–12035, doi:10.1029/JA092iA11p12023, 1987. Russell, C. T.: Solar wind and interplanetary magnetic field: A tutorial, Space Weather, Geophysical Monograph, 125, 2001. Schwenn, R.: The average solar wind in the inner heliosphere: Structure and slow variations, in: SolarWind FIVE, NASA Conf. Publ., CP-2280, 485, 1983. Tu, C.-Y. and Marsch, E.: Evidence for a Background Spectrum of Solar Wind Turbulence in the Inner Heliosphere, J. Geophys. Res., 95, 4337–4341, doi:10.1029/JA095iA04p04337, 1990. Tu C.-Y. and Marsch, E.: A Model of Solar Wind Fluctuations with Two Components: Alfv´en Waves and Convective Structures, J. Geophys. Res., 98, 1257–1276, doi:10.1029/92JA01947, 1993. Tu, C.-Y., Pu, Z.-Y., and Wei, F.-S.: The power spectrum of interplanetary Alfv´enic fluctuations: deviation of the governing equation and its solution, J. Geophys. Res., 89, 9695–9702, doi:10.1029/JA089iA11p09695, 1984. Tu, C.-Y., Marsch, E., and Thieme, K. M.: Basic properties of solar wind MHD turbulence near 0.3AU analysed by mean of Els¨asser variables, J. Geophys. Res., 94, 11739–11759, doi:10.1029/JA094iA09p11739, 1989. Verma, M. K., Roberts, D. A., and Goldstein, M. L.: Turbulent heating and temperature evolution in the solar wind plasma, J. Geophys. Res., 100, 19839–19850, doi:10.1029/95JA01216, 1995. Ann. Geophys., 29, 2317–2326, 2011 www.ann-geophys.net/29/2317/2011/en
dc.description.obiettivoSpecifico3.9. Fisica della magnetosfera, ionosfera e meteorologia spazialeen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorConsolini, G.en
dc.contributor.authorDe Michelis, P.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptINAF – Istituto di Astrofisica e Planetologia Spaziali, 00133 Roma, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.orcid0000-0002-3403-647X-
crisitem.author.orcid0000-0002-2708-0739-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
angeo-29-2317-2011.pdf557.69 kBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations 50

1
checked on Feb 7, 2021

Page view(s) 10

350
checked on Apr 20, 2024

Download(s) 50

137
checked on Apr 20, 2024

Google ScholarTM

Check

Altmetric