Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/727
DC FieldValueLanguage
dc.contributor.authorallAmend, J. P.; Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, USAen
dc.contributor.authorallRogers, K. L.; Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, USAen
dc.contributor.authorallShock, E. L.; Department of Geological Sciences and Department of Chemistry & Biochemistry, Arizona State University, Tempe, AZ 85287, USAen
dc.contributor.authorallGurrieri, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallInguaggiato, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.date.accessioned2006-02-15T15:02:48Zen
dc.date.available2006-02-15T15:02:48Zen
dc.date.issued2003en
dc.identifier.urihttp://hdl.handle.net/2122/727en
dc.description.abstractThe hydrothermal system at Vulcano, Aeolian Islands (Italy), is home to a wide variety of thermophilic,chemolithoautotrophic archaea and bacteria. As observed in laboratory growth studies, these organisms may use an array of terminal electron acceptors (TEAs), including O 2, NO-3,Fe(III),elemental sulphur and CO2; electron donors include H2,Fe2+,H2S and CH4. Concentrations of inorganic aqueous species and gases were measured in 10 hydrothermal fluids from seeps, wells and vents on Vulcano. These data were combined with standard Gibbs free energies ( ) to calculate overall Gibbs free energies (DGr) of 90 redox reactions that involve 16 inorganic N-, S-, C-, Fe-, H- and O-bearing compounds. It is shown that oxidation reactions with O2 as the TEA release significantly more energy (normalized per electron transferred) than most anaerobic oxidation reactions, but the energy yield is comparable or even higher for several reactions in which, or Fe(III) serves as the TEA. For example, the oxidation of CH4 to CO2 coupled to the reduction of Fe(III) in magnetite to Fe2+ releases between 94 and 123 kJ/mol e– , depending on the site. By comparison, the aerobic oxidation of H2 or reduced inorganic N-, S-, C- and Fe-bearing compounds generally yields between 70 and 100 kJ/mol e–. It is further shown that the energy yield from the reduction of elemental sulphur to H2 S is relatively low (8–19 kJ/mol e–) despite being a very common metabolism among thermophiles. In addition,for many of the 90 reactions evaluated at each of the 10 sites, values of DGr tend to cluster with differences < 20 kJ/mol e–. However, large differences in DGr up to ~ 60 kJ/mol e–) are observed in Fe redox reactions, due largely to considerable variations in Fe 2+, H + and H2 concentrations. In fact, at the sites investigated, most variations in DGr arise from differences in composition and not in temperature.en
dc.format.extent543 bytesen
dc.format.extent649651 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypeapplication/pdfen
dc.language.isoEnglishen
dc.publisher.nameBlackwellen
dc.relation.ispartofGeobiologyen
dc.relation.ispartofseries1(2003)en
dc.subjecthydrothermal systemen
dc.subjectVulcano Islanden
dc.titleEnergetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, Southern Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber37–58en
dc.identifier.URLhttp://www.blackwell-synergy.comen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystemsen
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systemsen
dc.relation.referencesAmend JP, Amend AC, Valenza M (1998) Determination of volatile fatty acids in the hot springs of Vulcano, Aeolian Islands, Italy. Organic Geochemistry 28, 699–705. Amend JP, Meyer-Dombard DR, Sheth SN, Zolotova N, Amend AC (2003) Palaeococcus helgesonii sp. nov., a facultatively anaerobic,hyperthermophilic archaeon from a geothermal well on Vulcano Island, Italy. Archives of Microbiology in press. Amend JP, Shock EL (1998) Energetics of amino acid synthesis in hydrothermal ecosystems. Science 281, 1659–1662. Amend JP, Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiology Reviews 25, 175–243. Badalamenti B, Chiodini G, Cioni R, Favara R, Francofonte S,Gurrieri S, Hauser S, Inguaggiato S, Italiano F, Magro G, Nuccio PM, Parello F, Pennisi M, Romeo L, Russo M, Sortino F, Valenza M, Vurro F (1991a) Special field workshop at Vulcano (Aeolian Islands) during summer 1988: geochemical results. Acta Vulcanologica 1, 223–227. Badalamenti B, Gurrieri S, Hauser S, Parello F, Valenza M (1988) Soil CO2 output in the island of Vulcano during the period 1984–88: surveillance of gas hazard and volcanic activity. Rendiconti della Societa Italiana di Mineralogia e Petrologia 43, 893–899. Badalamenti B, Gurrieri S, Hauser S, Parello F, Valenza M (1991b)Change in CO2 output at Vulcano island during summer 1988. Acta Vulcanologica 1, 219–221. Badalamenti B, Gurrieri S, Hauser S, Tonani F, Valenza M (1984)Considerazioni sulla concentrazione e sulla composizione isotopica della CO2 presente nelle manifestazioni naturali e nell’atmosfera dell’isola di Vulcano. Rendiconti della Societa Italiana di Mineralogia e Petrologia 39, 367–378. Baubron C, Allard P, Toutain JP (1990) Diffuse volcanic emissions of carbon dioxide from Vulcano Island, Italy. Nature 344, 51–53. Boetius A, Ravenschlag K, Schuber CJ, Rickert D, Widdel F, Gieske A, Amann R, Joergensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626. Bolognesi L, D’Amore F (1993) Isotopic variation of the hydrothermal system on Vulcano Island, Italy. Geochimica et Cosmochimica Acta 57, 2069–2082. Brannan DK, Caldwell DE (1980) Thermothrix thiopara: growth and metabolism of a newly isolated thermophile capable of oxidizing sulfur and sulfur compounds. Applied and Environmental Microbiology 40, 211–216. Brierley CL, Brierley JA (1973) A hemoautotrophic and thermophilic microorganism isolated from an acid hot spring. Canadian Journal of Microbiology 19, 183–188. Burggraf S, Jannasch HW, Nicolaus B, Stetter KO (1990)Archaeoglobus profundus sp. nov. represents a new species within the sulfate-reducing archaebacteria. Systematic and Applied Microbiology 13, 24–28. Caccavo FJ, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ (1994) Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Applied and Environmental Microbiology 60,3752–3759. Capaccioni B, Tassi F, Vaselli O (2001) Organic and inorganic geochemistry of low temperature gas discharges at the Baia di Levante beach, Vulcano Island, Italy. Journal of Volcanology and Geothermal Research 108, 173–185. Capasso G, D’Alessandro W, Favara R, Inguaggiato S, Parello F (2001) Interaction between the deep fluids and the shallow groundwaters on Vulcano Island (Italy). Journal of Volcanology and Geothermal Research 108, 189–200. Capasso G, Dongarra G, Favara R, Hauser S, Valenza M (1992)Isotope composition of rain water, well water and fumarole steam on the Island of Vulcano, and their implications for volcanic surveillance. Journal of Volcanology and Geothermal Research 49,147–155. Capasso G, Favara R, Inguaggiato S (1997) Chemical features and isotopic composition of gaseous manifestations on Vulcano Island, Aeolian Islands, Italy: an interpretative model of fluid circulation. Geochimica et Cosmochimica Acta 61, 3425–3440. Carapezza M, Diliberto IS (1993) Helium and CO2 soil degassing:data related to eruptive activity, unrest phenomena and other observation on the Italian active volcanoes in 1991. Vulcano and Stromboli. Acta Vulcanologica 3, 273–276. Carapezza M, Nuccio PM, Valenza M (1981) Genesis and evolution of the fumaroles of Vulcano (Aeolian Islands, Italy): a geochemical model. Bulletin of Volcanology 44, 547–563. Chiodini G, Cioni R, Guidi M, Marini L (1991) Geochemical variations at Fossa Grande crater fumaroles (Vulcano Island, Italy) in summer 1988. Acta Vulcanologica 1, 179–192. Chiodini G, Cioni R, Marini L (1993) Reactions governing the chemistry of crater fumaroles from Vulcano Island, Italy, and implications for volcanic surveillance. Applied Geochemistry 8, 357–371. Chiodini G, Cioni R, Marini L, Panichi C (1995) Origin of the fumarolic fluids on Vulcano Island, Italy and implications for volcanic surveillance. Bulletin of Volcanology 57, 99–110. Cioni R, D’Amore F (1984) A genetic model for the crater fumaroles of Vulcano Island (Sicily, Italy). Geothermics 13, 375–384. Clark DA, Norris PR (1996) Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology 142, 785–790. Conrad R, Schink B, Phelps TJ (1986) Thermodynamics of H2-consuming and H2-producing metabolic reactions in diverse methanogenic environments under in situ conditions. FEMS Microbiology and Ecology 38, 353–360. Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL,Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV (1998)The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392, 353–358. Dwyer DF, Weeg-Aerssens E, Shelton DR, Tiedje JM (1988)Bioenergetic conditions of butyrate metabolism by a syntrophic anaerobic bacterium in coculture with hydrogen-oxidizing methanogenic and sulfidogenic bacteria. Applied and Environmental Microbiology 54, 1354–1359. Elsgaard L, Isaksen MF, Joergensen BB, Alayse A-M, Jannasch HW (1994) Microbial sulfate reduction in deep-sea sediments at the Guaymas basin hydrothermal vent area: influence of temperature and substrates. Geochimica et Cosmochimica Acta 58, 3335–3343. Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Archives of Microbiology 145, 56–61. Fiala G, Stetter KO, Jannasch HW, Langworthy TA, Madon J (1986) Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing to 98 °C. Systematic and Applied Microbiology 8, 106–113. Fox RF (1988) Energy and the Evolution of Life. W.H. Freeman, New York. Ghauri MA, Johnson DB (1991) Physiological diversity amongst some moderately thermophilic iron-oxidizing bacteria. FEMS Microbiology Ecology 85, 327–333. Golovacheva RS, Karavaiko GI (1978) A new genus of thermophilic spore-forming bacteria, Sulfobacillus. Mikrobiologiya 47, 815–822 (in Russian). Gotz D, Banta A, Beveridge TJ, Rushdi AI, Simoneit BRT, Reysenbach A-L (2002) Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. International Journal of Systematic and Evolutionary Microbiology 52, 1349–1359. Greene AC, Patel BK, Sheehy AJ (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and ironreducing bacterium isolated from a petroleum reservoir. International Journal of Systematic Bacteriology 47, 505–509. Hafenbradl D, Keller M, Dirmeier R, Rachel R, Rossnagel P, Burggraf S, Huber H, Stetter KO (1996) Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Archives of Microbiology 166, 308–314. Helgeson HC (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. American Journal of Science 267, 729–804. Helgeson HC, Delany JM, Nesbitt WH, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. American Journal of Science 278A, 1–229. Helgeson HC, Kirkham DH, Flowers GC (1981) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 °C and 5 kb. American Journal of Science 281, 1249–1516. Hickey RF, Switzenbaum MS (1991) Thermodynamics of volatile fatty acid accumulation in anaerobic digesters subject to increases in hydraulic and organic loading. Research Journal of WPCF 63, 141–144. Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999)Methane-consuming archaebacteria in marine sediments. Nature 398, 802–805. Huber H, Jannasch H, Rachel R, Fuchs T, Stetter KO (1997)Archaeoblobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfur reducer, isolated from abyssal black smokers. Systematic and Applied Microbiology 20, 374–380. Huber R, Langworthy TA, König H, Thomm M, Woese CR,Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Archives of Microbiology 144, 324–333. Huber R, Rossnagel P, Woese CR, Rachel R, Langworthy TA,Stetter KO (1996) Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium Ammonifex degensii gen. nov. sp. nov. Systematic and Applied Microbiology 19, 40–49. Huber R, Stetter KO (1989) Thiobacillus prosperus sp. nov. represents a new group of halotolerant metal-mobilizing bacteria isolated from a marine geothermal field. Archives of Microbiology 151, 479–485. Huber R, Wilharm T, Huber D, Trincone A, Burggraf S, König H, Rachel R, Rockinger I, Fricke H, Stetter KO (1992) Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing Bacteria. Systematic and Applied Microbiology 15, 340–351. Jackson BE, McInerney MJ (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415, 454–456. Jeanthon C, L’Haridon S, Cueff V, Banta A, Reysenbach A-L, Prieur D (2002) Thermodesulfobacterium hydrogenophilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. International Journal of Systematic and Evolutionary Microbiology 52,765–772. Johnson JW, Oelkers EH, Helgeson HC (1992) SUPCRT92: a software package for calculating the standard molal properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0–1000 °C. Computers and Geosciences 18, 899–947. Jones W, Leigh A, Mayer F, Woese C, Wolfe R (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Archives of Microbiology 136,254–261. Jørgensen BB, Isaksen MF, Jannasch HW (1992) Bacterial sulfate reduction above 100C in deep-sea hydrothermal vent systems. Science 258, 1756–1757. Jørgensen BB, Zawacki LX, Jannasch HW (1990) Thermophilic bacterial sulfate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vents (Gulf of California). Deep-Sea Research I 37, 695–710. Kashefi K, Holmes DE, Reysenbach A-L, Lovley DR (2002a) Use of Fe (III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. Applied and Environmental Microbiology 68, 1735–1742. Kashefi K, Tor JM, Holmes DE, Gaw Van Praagh CV, Reysenbach A-L, Lovley DR (2002b) Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe (III) serving as the sole electron acceptor. International Journal of Systematic and Evolutionary Microbiology 52, 719–728. Kawashima T, Amano N, Koike H, Makino S, Higuchi S, Kawashima-Ohya Y, Watanabe K, Yamazaki M, Kanehori K, Kawamoto T,Nunoshiba T, Yamamoto Y, Aramaki H, Makino K, Suzuki M (2000) Archaeal adaptation to higher temperatures revealed by genomic sequence of Thermoplasma volcanium. Proceedings of the National Academy of Sciences 97, 14257–14262. Kawasumi T, Igarashi Y, Kodama T, Minoda Y (1984) Hydrogenobacter thermophilus gen. nov., sp. nov., an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium. International Journal of Systematic Bacteriology 34, 5–10. Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 392, 364–370. Kurr M, Huber R, König H, Jannasch HW, Fricke H, Trincone A, Krisjansson JK, Stetter KO (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing to 110 °C. Archives of Microbiology 156,239–247. Lovley DR (2000) Fe (III) and Mn (IV) reduction. In Environmental Microbe–Metal Interactions (ed. Lovley DR). ASM Press, Washington D.C., USA pp. 3–30. Maloney PC (1983) Relationship between phosporylation potential and electrochemical H+ gradient during glycolysis in Streptococcus lactis. Journal of Bacteriology 153, 1461–1470. McCollom TM (1999) Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. Journal of Geophysical Research 104, 30729–30742. McCollom TM (2000) Geochemical constraints on primary productivity in submarine hydrothermal vent plumes. Deep-Sea Research I 47, 85–101. McCollom TM, Shock EL (1997) Geochemical constraints on chemolithoautotrophic metabolism by micro organisms in seafloor hydrothermal systems. Geochimica et Cosmochimica Acta 61, 4375–4391. Nealson KH, Stahl DA (1997) Micro organisms and biogeochemical cycles: what can we learn from layered microbial communities? In Geomicrobiology: Interactions Between Microbes and Minerals,Vol. 35 (eds Banfield JF, Nealson KH). The Mineralogical Society of America, Washington D.C., USA pp. 5–34. Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA et al. (1999)Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399, 323–329. Norris PR, Clark DA, Owen JP, Waterhouse S (1996) Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. Microbiology 142, 775–783. Nozhevnikova AN, Chudina VI (1984) Morphology of the thermophilic acetate methane bacterium Methanothrix thermoacetophila sp. nov. Mikrobiologiya 53, 756–760 (in Russian). Nuccio PM, Paonita A, Sortino F (1999) Geochemical modeling of mixing between magmatic and hydrothermal gases: the case of Vulcano Island, Italy. Earth and Planetary Science Letters 167,321–333. Odinstova EV, Jannasch HW, Mamone JA, Langworthy TA (1996)Thermothrix azorensis sp. nov., an obligately chemolithoautotrophic, sulfur-oxidizing, thermophilic bacterium. International Journal of Systematic Bacteriology 46,422–428. Panichi C, Noto P (1992) Isotopic and chemical composition of water, steam and gas samples of the natural manifestations of the island of Vulcano (Aeolian Arc, Italy). Acta Vulcanologica 2,297–312. Robb FT, Maeder DL, Brown JR, DiRuggiero J, Stump MD, Yeh RK, Weiss RB, Dunn DM (2001) Genomic sequence of hyperthermophile, Pyrococcus furiosus : implications for physiology and enzymology. Methods in Enzymology 330, 134–157. Schink B (1990) Conservation of small amounts of energy in fermenting bacteria. In Biotechnology, Focus 2 (eds Finn RK,Präve P). Hanser Publishers, Munich, Germany pp. 63–89. Schink B, Thauer RK (1988) Energetics of syntrophic methane formation and the influence of aggregation. In Granular Anaerobic Sludge: Microbiology and Technology (eds Lettinga G, Zehnder AJB and Hulshoff LW). Wageningen, The Netherlands:Pudoc pp. 5–17. Scholten JCM, Murrell JC, Kelly DP (2003) Growth of sulfatereducing bacteria and methanogenic archaea with methylated sulfur compounds: a commentary on the thermodynamic aspects. Archives of Microbiology 179, 135–144. Segerer A, Neuner A, Kristjansson JK, Stetter KO (1986) Acidianus infernus gen. nov., sp. nov. and Acidianus brierleyi comb. nov. Facultatively aerobc, extremely acidophilic thermophilic sulfurmetabolizing archaebacteria. International Journal of Systematic Bacteriology 36, 559–564. Seitz HJ, Schink B, Pfennig N, Conrad R (1990) Energetics of syntrophic ethanol oxidation in defined chemostat cocultures: energy requirements for H2 production and H2 oxidation (1). Archives of Microbiology 155, 82–88. Shock EL, Amend JP, Chan GW (1999) Geochemistry of hydrothermal ecosystems. In Geochemistry of the Earth’s Surface (ed. Armannson H). A.A. Balkema, Rotterdam, pp. 245–249. Shock EL, Helgeson HC (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 °C. Geochimica et Cosmochimica Acta 52, 2009–2036. Shock EL, Helgeson HC (1990) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: standard partial molal properties of organic species. Geochimica et Cosmochimica Acta 54, 915–945. Shock EL, Helgeson HC, Sverjensky DA (1989) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: standard partial molal properties of inorganic neutral species. Geochimica et Cosmochimica Acta 53,2157–2183. Shock EL, Koretsky CM (1993) Metal–organic complexes in geochemical processes – calculation of standard partial molal thermodynamic properties of aqueous acetate complexes at high pressures and temperatures. Geochimica et Cosmochimica Acta 57,4899–4922. Shock EL, Koretsky CM (1995) Metal–organic complexes in geochemical processes: estimation of standard partial molal thermodynamic properties of aqueous complexes between metal cations and monovalent organic acid ligands at high pressures and temperatures. Geochimica et Cosmochimica Acta 59, 1497–1532. Shock EL, Meyer-Dombard DR, Rogers KL, Amend JP, Osburn GR,Fischer T (in press) Controls on the forms and abundances of geochemical energy in hot spring habitats, Yellowstone National Park, USA. Geobiology (in press). Shock EL, Oelkers EH, Johnson JW, Sverjensky DA, Helgeson HC (1992) Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures: effective electrostatic radii, dissociation constants and standard partial molal properties to 1000 °C and 5 kbar. Journal of the Chemical Society, Faraday Transactions 88, 803–826. Skoog A, Vlahos P, Amend JP (in press) Concentration and distribution of dissolved neutral aldoses in a shallow hydrothermal vent system, Vulcano Island (Italy). Geochimica et Cosmochimica Acta (in press). Slobodkin A, Campbell B, Cary SC, Bonch-Osmolovskaya E, Jeanthon C (2001) Evidence for the presence of thermophilic Fe (III)-reducing micro organisms in deep-sea hydrothermal vents at 13 °N (East Pacific Rise). FEMS Microbiology Ecology 36, 235–243. Slobodkin A, Reysenbach A-L, Strutz N, Dreier M, Wiegel J (1997) Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe (III)-reducing bacterium from a continental hot spring. International Journal of Systematic Bacteriology 47, 541–547. Smith DP, McCarty PL (1989) Energetic and rate effects on methanogenesis of ethanol and propionate in perturbed CSTRs. Biotechnology and Bioengineering 34, 39–54. Sonne-Hansen J, Ahring BK (1999)Thermodesulfobacterium hveragerdense sp. nov. and Thermodesulfovibrio islandicus sp. nov., two thermophilic sulfate reducing bacteria isolated from an Icelandic hot spring. Systematic and Applied Microbiology 22,559–564. Stetter KO (1982) Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105 °C. Nature 300, 258–260. Stetter KO (1988) Archaeoglobus fulgidus gen. nov., sp. nov. a new taxon of extremely thermophilic arachaebacteria. Systematic and Applied Microbiology 10, 172–173. Stetter KO (1996) Hyperthermophilic procaryotes. FEMS Microbiology Reviews 18, 149–158. Stetter KO, Fiala G, Huber G, Huber R, Segerer A (1990)Hyperthermophilic micro organisms. FEMS Microbiology Reviews 75, 117–124. Stetter KO, König H, Stackebrandt E (1983) Pyrodictium gen. nov.,a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105 °C. Systematic and Applied Microbiology 4, 535–551. Svensson E, Skoog A, Amend JP (in press) Concentration and distribution of dissolved amino acids in a shallow hydrothermal vent system, Vulcano Island (Italy). Geochimica et Cosmochimica Acta (in press). Tanger JC, Helgeson HC (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: revised equations of state for the standard partial molal properties of ions and electrolytes. American Journal of Science 288, 19–98. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriological Reviews 41,100–180. Tor JM, Amend JP, Lovley DR (2003) Metabolism of organic compounds in anaerobic, hydrothermal sulfate-reducing sediments. Environmental Microbiology (in press). Tor JM, Kashefi K, Lovley DR (2001) Acetate oxidation coupled to Fe (III) reduction in hyperthermophilic micro organisms. Applied and Environmental Microbiology 67, 1363–1365. Völkl P, Huber R, Drobner E, Rachel R, Burggraf S, Trincone A, Stetter KO (1993) Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Applied and Environmental Microbiology 59, 2918–2926. Weber A, Jørgensen BB (2002) Bacterial sulfate reduction in hydrothermal sediments of the Guaymas Basin, Gulf of California,Mexico. Deep-Sea Research I 49, 827–841. Wolery T (1992) EQ3NR, A computer Program for Geochemical Aqueous Speciation-Solubility Calculations: Theoretical Manual,User’s Guide, and Related Documentation. Lawrence Livermore National Laboratory, Livermore, CA, USA. Wolery TJ, Daveler SA (1992) EQ6, a Computer Program for Reaction Path Modeling of Aqueous Geochemical Systems: Theoretical Manual, User’s Guide, and Related Documents. Lawrence Livermore National Laboratory. Wu WM, Jain MK, Zeikus JG (1994) Anaerobic degradation of normal- and branched-chain fatty acids with four or more carbons to methane by a syntrophic methanogenic triculture. Applied and Environmental Microbiology 60, 2220–2226. Zillig W, Holz I, Janekovic D, Klenk H-P, Imsel E, Trent J, Wunderl S, Forjaz VH, Coutinho R, Ferreira T (1990)Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. Journal of Bacteriology 172, 3959–3965. Zillig W, Holz I, Janekovic D, Schäfer W, Reiter WD (1983) The archaebacterium Thermococcus celer represent a novel genus within the thermophilic branch of the Archaebacteria. Systematic and Applied Microbiology 4, 88–94. Zolotov MY, Shock EL (2003) Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa. Journal of Geophysical Research 108, 5022. doi: 10.1029/2002JE001966.en
dc.description.fulltextpartially_openen
dc.contributor.authorAmend, J. P.en
dc.contributor.authorRogers, K. L.en
dc.contributor.authorShock, E. L.en
dc.contributor.authorGurrieri, S.en
dc.contributor.authorInguaggiato, S.en
dc.contributor.departmentDepartment of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, USAen
dc.contributor.departmentDepartment of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, USAen
dc.contributor.departmentDepartment of Geological Sciences and Department of Chemistry & Biochemistry, Arizona State University, Tempe, AZ 85287, USAen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, USA-
crisitem.author.deptDepartment of Earth and Planetary Sciences, Washington University, St. Louis, Missouri.-
crisitem.author.deptDepartment of Geological Sciences and Department of Chemistry & Biochemistry, Arizona State University, Tempe, AZ 85287, USA-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.orcid0000-0003-4085-0440-
crisitem.author.orcid0000-0003-3726-9946-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent03. Hydrosphere-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Amend et al., Geobiology 2003.pdfMain article634.42 kBAdobe PDF
Redirect Blackwell.htmlRedirect-Blackwell543 BHTMLView/Open
Show simple item record

Page view(s) 50

262
checked on Apr 17, 2024

Download(s) 50

98
checked on Apr 17, 2024

Google ScholarTM

Check