Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7267
DC FieldValueLanguage
dc.contributor.authorallRongo, R.; Università della Calabria, Dipartimento di Scienze della Terra, Arcavacata di Rende (Cosenza), Italyen
dc.contributor.authorallAvolio, M. A.; Università della Calabria, Dipartimento di Matematica, Arcavacata di Rende (Cosenza), Italyen
dc.contributor.authorallBehncke, B.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallD'Ambrosio, D.; Università della Calabria, Dipartimento di Matematica, Arcavacata di Rende (Cosenza), Italyen
dc.contributor.authorallDi Gregorio, S.; Università della Calabria, Dipartimento di Matematica, Arcavacata di Rende (Cosenza), Italyen
dc.contributor.authorallLupiano, V.; Università della Calabria, Dipartimento di Scienze della Terra, Arcavacata di Rende (Cosenza), Italyen
dc.contributor.authorallNeri, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italiaen
dc.contributor.authorallSpataro, W.; Università della Calabria, Dipartimento di Matematica, Arcavacata di Rende (Cosenza), Italyen
dc.contributor.authorallCrisci, G. M.; Università della Calabria, Dipartimento di Scienze della Terra, Arcavacata di Rende (Cosenza), Italyen
dc.date.accessioned2011-12-22T14:36:40Zen
dc.date.available2011-12-22T14:36:40Zen
dc.date.issued2011-12en
dc.identifier.urihttp://hdl.handle.net/2122/7267en
dc.description.abstractThe individuation of areas that are more likely to be affected by new events in volcanic regions is of fundamental relevance for the mitigation of the possible consequences, both in terms of loss of human life and material properties. Here, we describe a methodology for defining flexible high-detail lava-hazard maps and a technique for the validation of the results obtained. The methodology relies on: (i) an accurate analysis of the past behavior of the volcano; (ii) a new version of the SCIARA model for lava-flow simulation (based on the macroscopic cellular automata paradigm); and (iii) high-performance parallel computing for increasing computational efficiency. The new release of the SCIARA model introduces a Bingham-like rheology as part of the minimization algorithm of the differences for the determination of outflows from a generic cell, and an improved approach to lava cooling. The method is here applied to Mount Etna, the most active volcano in Europe, and applications to landuse planning and hazard mitigation are presented.en
dc.description.sponsorshipThis study was sponsored by the Italian National Civil Defence Department and the Istituto Nazionale di Geofisica e Vulcanologia (INGV), project V3_6/09 "V3_6 – Etna".en
dc.language.isoEnglishen
dc.publisher.nameIstituto Nazionale di Geofisica e Vulcanologiaen
dc.relation.ispartofAnnals of Geophysicsen
dc.relation.ispartofseries5/54(2011)en
dc.subjectvolcanic risken
dc.subjectcellular automataen
dc.subjectAlgorithms and implementationen
dc.subjectStatistical analysisen
dc.subjectData processingen
dc.titleDefining high-detail hazard maps by a cellular automata approach: application to Mount Etna (Italy)en
dc.title.alternativeHAZARD MAPS WITH CELLULAR AUTOMATAen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber568-578en
dc.identifier.URLhttp://www.annalsofgeophysics.eu/index.php/annals/article/viewFile/5340/5474en
dc.subject.INGV04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneousen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.03. Magmasen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risken
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.99. General or miscellaneousen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.01. Data processingen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networksen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.04. Statistical analysisen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.99. General or miscellaneousen
dc.subject.INGV05. General::05.02. Data dissemination::05.02.03. Volcanic eruptionsen
dc.subject.INGV05. General::05.08. Risk::05.08.99. General or miscellaneousen
dc.identifier.doi10.4401/ag-5340en
dc.relation.referencesAcocella, V. and M. Neri (2003). What makes flank eruptions? The 2001 Etna eruption and the possible triggering mechanisms, B. Volcanol., 65, 517-529. Avolio, M.V., S. Di Gregorio, R. Rongo, M. Sorriso-Valvo and W. Spataro (1998). Hexagonal cellular automata model for debris flow simulation, In: A. Buccianti, G. Nardi and R. Potenza (eds.), Proceedings of the International Association for Mathematical Geology (IAMG), Litografia Editrice, Naples, Part I, 183-188. Barberi, F., M.L. Carapezza, M. Valenza and L. Villari (1993). The control of lava flow during the 1991-1992 eruption of Mt. Etna., J. Volcanol. Geoth. Res., 56, 1-34. Barberi, F., F. Brondi, M.L. Carapezza, L. Cavarra and C. Murgia (2003). Earthen barriers to control lava flows in the 2001 eruption of Mt. Etna, J. Volcanol. Geoth. Res., 123, 231-243. Behncke, B and M. Neri (2003a). Cycles and trends in the recent eruptive behavior of Mount Etna (Italy), Can. J. Earth Sci., 40, 1405-1411. Behncke, B. and M. Neri (2003b). The July-August 2001 eruption of Mt. Etna (Sicily), B. Volcanol., 65, 461-476. Behncke, B., M. Neri and A. Nagay (2005). New data from a GIS-based study, kinematics and dynamics of lava flows, Geol. S. Am. S., 396, 189-208. Calvari, S. and H. Pinkerton (1998). Formation of lava tubes and extensive flow field during the 1991-93 eruption of Mount Etna, J. Geophys. Res., 103, 27291-27302. Cappello, A., A. Vicari and C. Del Negro (2011a). Retrospective validation of a lava-flow hazard map for Mount Etna volcano, Annals of Geophysics, 54 (5), 634-640 (this issue). Cappello, A., A. Vicari and C. Del Negro (2011b). Assessment and modeling of lava flow hazard on Etna volcano, B. Geofis. Teor. Appl., 52 (2), 299-308; doi: 10.4430/bgta0003. Chester, D.K., A.M. Duncan, C. Dibben, J.E. Guest and P.H. Lister (1999). Mascali, Mount Etna region, Sicily: an example of fascist planning during the 1928 eruption and its continuing legacy, Nat. Hazards, 19, 29-46. Crisci, G.M., S. Di Gregorio and G. Ranieri (1982). A cellular space model of basaltic lava flow, In: Proceedings International AMSE Conference Modelling & Simulation (Paris, France, Jul.1-3), 65-67. Crisci, G.M., S. Di Gregorio, R. Rongo, M. Scarpelli, W. Spataro and S. Calvari (2003). Revisiting the 1669 Etnean eruptive crisis using a cellular automata model and implications for volcanic hazard in the Catania area, J. Volcanol. Geoth. Res., 123, 211-230. Crisci, G.M., R. Rongo, S. Di Gregorio and W. Spataro (2004). The simulation model SCIARA: the 1991 and 2001 lava flows at Mount Etna, J. Volcanol. Geoth. Res., 132, 253-267. Crisci, G.M., M.V. Avolio, B. Behncke, D. D'Ambrosio, S. Di Gregorio, V. Lupiano, M. Neri, R. Rongo and W. Spataro (2010). Predicting the impact of lava flows at Mount Etna,J. Geophys. Res., 115, 1-14. D'Ambrosio, D., S. Di Gregorio and G. Iovine (2003). Simulating debris flows through a hexagonal cellular automata model: Sciddica S3-hex, Nat. Hazard Earth Sys., 3, 545-559. D'Ambrosio, D., R. Rongo, W. Spataro, M.V. Avolio and V. Lupiano (2006). Lava Invasion Susceptibility Hazard Mapping Through Cellular Automata, 7th International Conference on Cellular Automata for Research and Industry (ACRI), LNCS 4173, 452-461. D'Ambrosio, D. and W. Spataro (2007). Parallel evolutionary modelling of geological processes, Parallel. Comput., 33, 186-212. Del Negro, C., L. Fortuna, A. Hérault and A. Vicari (2008). Simulations of the 2004 lava flow at Etna volcano using the magflow cellular automata model, B. Volcanol., 70, 805-812. Dibben, C.J.L. (2008). Leaving the city for the suburbs – The dominance of ‘ordinary’ decision making over volcanic risk perception in the production of volcanic risk on Mt Etna, Sicily, J. Volcanol. Geoth. Res., 172, 288-299. Di Gregorio, S. and R. Serra (1999). An empirical method for modelling and simulating some complex macroscopic phenomena by cellular automata, Future Gener. Comp. Sy., 16, 259-271. Dragoni, M., M. Bonafede and E. Boschi (1986). Downslope flow models of a Bingham liquid: implications for lava flows, J. Volcanol. Geoth. Res., 30, 305-325. Favalli, M., S. Tarquini, A. Fornaciai and E. Boschi (2009). A new approach to risk assessment of lava flow at Mount Etna, Geology, 37, 1111-1114. Felpeto, A., V. Arana, R. Ortiz, M. Astiz and A. Garcia (2001). Assessment and modelling of lava flow hazard on Lanzarote (Canary Islands), Nat. Hazards, 23, 247-257 Guest, J.E. and J.B. Murray (1979). An analysis of hazard from Mount Etna volcano, J. Geol. Soc. London, 136, 347- 354. Guest, J.E., C.G.J. Kilburn, H. Pinkerton and A.M. Duncan (1987). The evolution of lava flow-fields: observations of the 1981 and 1983 eruptions of Mount Etna, Sicily, B. Volcanol., 49, 527-540. Ho, C-H., E.I. Smith, D.L. Feuerbach and T.R. Naumann (1991). Eruptive calculation for the Yucca Mountain site, USA: statistical estimation of recurrence rates, B. Volcanol., 54, 50-56. Ishihara, K., M. Iguchi and K. Kamo (1990). Numerical simulation of lava flows on some volcanoes in Japan, In: J.H. Fink (ed.), Lava flows and domes: emplacement mechanisms and hazard implications, IAVCEI Proceedings in Volcanology 2, Berlin, Springer Verlag, 174-207. Miyamoto, H. and S. Sasaki (1997). Simulating lava flows by an improved cellular automata method, Computat. Geosci., 23, 283-292. Park, S. and J.D. Iversen (1984). Dynamics of lava flow: thickness growth characteristics of steady two-dimensional flow, Geophys. Res. Lett., 11, 641-644. Spataro, W., M.V. Avolio, V. Lupiano, G.A. Trunfio, R. Rocco and D. D'Ambrosio (2010). The latest release of the lava flows simulation model SCIARA: first application to Mt Etna (Italy) and solution of the anisotropic flow direction problem on an ideal surface, In: International Conference on Computational Science, ICCS 2010 (Amsterdam, The Netherlands, May 31 - June 2, 2010), Procedia Computer Science, 1 (1), 17-26. Tanguy, J-C., M. Condomines, M. Le Goff, V. Chillemi, S. La Delfa and G. Patanè (2007). Mount Etna eruptions of the last 2,750 years: revised chronology and location through archeomagnetic and 226Ra-230Th dating, B. Volcanol., 70, 55-83. Tarquini, S. and M. Favalli (2010). Changes of the susceptibility to lava flow invasion induced by morphological modifications of an active volcano: the case of Mount Etna, Italy, Nat. Hazards, 54, 537-546, Vicari, A., A. Hérault, C. Del Negro, M. Coltelli, M. Marsella and C. Proietti (2007). Modelling of the 2001 lava flow at Etna volcano by a cellular automata approach, Environ. Modell. Softw., 22, 1465-1471. Von Neumann, J. (1966). Theory of self-reproducing automata, Univ. Illinois Press, Urbana.en
dc.description.obiettivoSpecifico1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcanien
dc.description.obiettivoSpecifico3.5. Geologia e storia dei vulcani ed evoluzione dei magmien
dc.description.obiettivoSpecifico3.6. Fisica del vulcanismoen
dc.description.obiettivoSpecifico4.3. TTC - Scenari di pericolosità vulcanicaen
dc.description.journalTypeJCR Journalen
dc.description.fulltextopenen
dc.contributor.authorRongo, R.en
dc.contributor.authorAvolio, M. A.en
dc.contributor.authorBehncke, B.en
dc.contributor.authorD'Ambrosio, D.en
dc.contributor.authorDi Gregorio, S.en
dc.contributor.authorLupiano, V.en
dc.contributor.authorNeri, M.en
dc.contributor.authorSpataro, W.en
dc.contributor.authorCrisci, G. M.en
dc.contributor.departmentUniversità della Calabria, Dipartimento di Scienze della Terra, Arcavacata di Rende (Cosenza), Italyen
dc.contributor.departmentUniversità della Calabria, Dipartimento di Matematica, Arcavacata di Rende (Cosenza), Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentUniversità della Calabria, Dipartimento di Matematica, Arcavacata di Rende (Cosenza), Italyen
dc.contributor.departmentUniversità della Calabria, Dipartimento di Matematica, Arcavacata di Rende (Cosenza), Italyen
dc.contributor.departmentUniversità della Calabria, Dipartimento di Scienze della Terra, Arcavacata di Rende (Cosenza), Italyen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italiaen
dc.contributor.departmentUniversità della Calabria, Dipartimento di Matematica, Arcavacata di Rende (Cosenza), Italyen
dc.contributor.departmentUniversità della Calabria, Dipartimento di Scienze della Terra, Arcavacata di Rende (Cosenza), Italyen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità della Calabria, Dipartimento di Scienze della Terra, Arcavacata di Rende (Cosenza), Italy-
crisitem.author.deptUniversità della Calabria, Dipartimento di Matematica, Arcavacata di Rende (Cosenza), Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptUniversità della Calabria, Dipartimento di Matematica, Arcavacata di Rende (Cosenza), Italy-
crisitem.author.deptDepartment of Mathematics, University of Calabria, 87036 Rende, Italy-
crisitem.author.deptDepartment of Earth Sciences, University of Calabria, 87036 Rende, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptHigh Performance Computing Centre, University of Calabria, 87036 Rende, Italy-
crisitem.author.deptUniversità della Calabria, Dipartimento di Scienze della Terra, Arcavacata di Rende (Cosenza), Italy-
crisitem.author.orcid0000-0003-1991-1421-
crisitem.author.orcid0000-0002-5890-3398-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat
2011 Rongo et al AG 2011.pdfArticle2.52 MBAdobe PDFView/Open
Show simple item record

WEB OF SCIENCETM
Citations

12
checked on Feb 10, 2021

Page view(s) 10

1,373
checked on Mar 27, 2024

Download(s) 50

224
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric