Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7254
DC FieldValueLanguage
dc.contributor.authorallIezzi, G.; Università G. d'Annunzioen
dc.contributor.authorallMollo, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallTorresi, G.; Università G. d'Annunzioen
dc.contributor.authorallVentura, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallCavallo, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallScarlato, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2011-12-21T10:34:07Zen
dc.date.available2011-12-21T10:34:07Zen
dc.date.issued2011-01-28en
dc.identifier.urihttp://hdl.handle.net/2122/7254en
dc.description.abstractSolidification experiments at (a) five different cooling rates (25, 12.5, 3, 0.5 and 0.125 °C/min) between 1300 and 800 °C, and (b) variable quenching temperatures (1100, 1000, 900 and 800 °C) at a fixed cooling rate of 0.5 °C/min were performed on an andesitic melt (SiO2=58.52 wt.% and Na2O+K2O=4.43 wt.%) at air conditions from high superheating temperature. The results show that simultaneous and duplicated experiments with Pt-wire or Pt-capsule produce identical run-products. Preferential nucleation on Ptcontainers or bubbles is lacking. Plagioclase and Fe–Ti oxide crystals nucleate firstly from the melt. Clinopyroxene crystals form only at lower cooling rates (0.5 and 0.125 °C/min) and quenching temperatures (900 and 800 °C). At higher cooling rates (25, 12.5 and 3 °C/min) and quenching temperature (1100 °C), plagioclase and Fe–Ti oxide crystals are embedded in a glassy matrix; by contrast, at lower cooling rates (0.5 and 0.125 °C/min) and below 1100 °C they form an intergrowth texture. The crystallization of plagioclase and Fe–Ti oxide starts homogeneously and then proceeds by heterogeneous nucleation. The crystal size distribution (CSD) analysis of plagioclase shows that crystal coarsening increases with decreasing cooling rate and quenching temperature. At the same time, the average growth rate of plagioclases decreases from 2.1×10−6 cm/s (25 °C/min) to 5.7×10−8 cm/s (0.125 °C/min) and crystals tend to be more equant in habit. Plagioclases and Fe–Ti oxides depart from their equilibrium compositions with increasing cooling rate; plagioclases shift from labradorite–andesine to anorthite–bytownite. Therefore, kinetic effects due to cooling significantly change the plagioclase composition with remarkable petrological implications for the solidification of andesitic lavas and dikes. The glass-forming ability (GFA) of the andesitic melt has been also quantified in a critical cooling rate (Rc) of ~37 °C/min. This value is higher than those measured for latitic (Rc ~1 °C/min) and trachytic (Rcb0.125 °C/min) liquids demonstrating that little changes of melt composition are able to significantly shift the initial nucleation behavior of magmas and the following solidification paths.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofChemical Geologyen
dc.relation.ispartofseries/283 (2011)en
dc.subjectAndesitic melten
dc.subjectExperimental solidificationen
dc.titleExperimental solidification of an andesitic melt by coolingen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber261–273en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrologyen
dc.identifier.doi10.1016/j.chemgeo.2011.01.024en
dc.relation.referencesBerkebile, C.A., Dowty, E., 1982. Nucleation in laboratory charges of basaltic composition. American Mineralogist 67, 886–899. Burgisser, A., Scaillet, B., 2007. Redox evolution of a degassing magma rising to the surface. Nature 445, 194–197. Burkhard, D.J.M., 2005a. Nucleation and growth rates of pyroxene, plagioclase, and Fe– Ti oxides in basalt under atmospheric conditions. European Journal of Mineralogy 17, 675–685. Burkhard, D.J.M., 2005b. Crystallization and oxidation during emplacement of lava lobes: In: Manga, M., Ventura, G. (Eds.), Geological Society of America, Special Paper, 396, pp. 67–80. Cashman, K.V., 1991. Textural constraints on the kinetics of crystallization of igneous rocks: In: Nicholls, J., Russell, J.K. (Eds.), Reviews in Mineralogy, 24, pp. 259–309. Castro, J.M., Beck, P., Tuffen, H., Nichols, A.R.L., Dingwell, D.B., Martin, M.C., 2008. Timescales of spherulite crystallization in obsidian inferred from water concentration profiles. American Mineralogist 93, 1816–1822. Chistyakova, S., Latypov, R., 2009. On the development of internal chemical zonation in small mafic dikes. Geological Magazine 147, 1–12.Conte, A., Perinelli, C., Trigila, R., 2006. Cooling kinetics experiments on different Stromboli lavas: effects on crystal morphologies and phase composition. Journal of Volcanology and Geothermal Research 155, 179–200. Costa, A., 2005. Viscosity of high crystal content melts: dependence on solid fraction. Geophysical Research Letters 32 (22), 1–5. Couch, S., 2003. Experimental investigation of crystallization kinetics in a haplogranite system. American Mineralogist 10, 1471–1485. Davis, M.J., Ihinger, P.D., 1998. Heterogeneous crystal nucleation on bubbles in silicate melts. American Mineralogist 83, 1008–1015. De Benedetti, P.G., 1995. Metastable Liquids, Concepts and Principles. Princeton University Press, Princeton, NY. Deer, W.A., Howie, R.A., Zussman, J., 2001. Framework Silicates: FeldsparsSecond Edition. The Geological Society, London. Del Gaudio, P., Mollo, S., Ventura, G., Iezzi, G., Taddeucci, J., Cavallo, A., 2010. Cooling rate-induced differentiation in anhydrous and hydrous basalts at 500 MPa: implications for the storage and transport of magmas in dikes. Chemical Geology 270, 164–178. Dingwell, D.B., 2006. Transport properties of magmas: diffusion and rheology. Elements 2, 281–286. Dowty, E., 1980. In: Hargraves, R.B. (Ed.), Crystal Growth and Nucleation Theory and the Numerical Simulation of Igneous Crystallisation. Princeton University Press, pp. 419–485. Dunbar, N.W., Riciputi, L.R., Jacobs, G.K., Naney, M.T., Christie, W., 1993. Generation of rhyolitic melt in an artificial magama: implications for fractional crystallization processes in natural magmas. Journal of Volcanology and Geothermal Research 57, 157–166. Dunbar, N.W., Jacobs, G.K., Naney, M.T., 1995. Crystallization processes in an artificial magma: variations in crystal shape, growth rate and composition with melt cooling history. Contribution to Mineralogy and Petrology 120, 412–425. Fan, G.J., Choo, H., Liaw, P.K., 2007. A new criterion for the glass-forming ability of liquidus. Journal of Non-Crystalline Solids 353, 102–107. Fenn, P.M., 1977. The nucleation and growth of alkali feldspars from hydrous melts. The Canadian Mineralogist 15, 135–161. Fokin, V.M., Zanotto, E.D., Schmelzer, J.W.P., 2003. Homogeneous nucleation versus glass transition temperature of silicate glasses. Journal of Non-Crystalline Solids 321, 52–65. Fokin, V.M., Nascimento, M.L.F., Zanotto, E.D., 2005. Correlation between maximum crystal growth rate and glass transition temperature of silicate glasses. Journal of Non-Crystalline Solids 351, 789–794. Fokin, V.M., Zanotto, E.D., Yuritsyn, N.S., Schmelzer, J.W.P., 2006. Homogeneous crystal nucleation in silicate glasses: a 40 years perspective. Journal of Non-Crystalline Solids 352, 2681–2714. Ghiorso, M.S., Sack, R.O., 1995. Chemical mass-transfer in magmatic processes 4. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquidus-solid equilbria in magmatic systems at elevated temperatures and pressures. Contribution to Mineralogy and Petrology 119, 197–212. Giordano, D., Dingwell, D.B., 2003. The kinetic fragility of natural silicate melts. Journal of Physics: Condensed Matter 15, S945–S954. Hammer, J.E., 2004. Crystal nucleation in hydrous rhyolite: experimental data applied to classical theory. American Mineralogist 89, 1673–1679. Hammer, J.E., 2006. Influence of fO2 and cooling rate on the kinetics and energetics of Fe-rich basalt crystallization. Earth and Planetary Science Letters 248, 618–637. Hammer, J.E., 2008. Experimental studies of the kinetics and energetics of magma crystallization: In: Putirka, K.D., Tepley, F.J. (Eds.), Reviews in Mineralogy, 69, pp. 9–59. Hammer, J.E., Sharp, T.G., Wessel, P., 2010. Heterogeneous nucleation and epitaxial crystal growth of magmatic minerals. Geology 38, 367–370. Harris, A.J.L., Bailey, J., Calvari, S., Dehn, J., 2005. Heat loss measured at a lava channel and its implications for down-channel cooling and rheology: In: Manga, M., Ventura, G. (Eds.), Geological Society of America, Special Paper, 396, pp. 125–146. Hekinian, R., Mühe, R., Worthington, T.J., Stoffers, P., 2008. Geology of a submarine volcanic caldera in the Tonga Arc: dive results. Journal of Volcanology and Geothermal Research 176, 571–582. Higgins, M.D., 1998. Origin of anorthosite by textural coarsening: quantitative measurements of a natural sequence of textural development. Journal of Petrology 39, 1307–1323. Higgins, M.D., 2000. Measurement of crystal size distributions. American Mineralogist 85, 1105–1116. Higgins, M.D., 2002. A crystal size-distribution study of the Kiglapait layered mafic intrusion, Labrador, Canada: evidence for textural coarsening. Contribution to Mineralogy and Petrology 144, 314–330. Higgins, M.D., 2006. Quantitative Textural Measurements in Igneous and Metamorphic Petrology. Cambridge University Press, Cambridge. Higgins, M.D., Roberge, J., 2003. Crystal size distribution of plagioclase and amphibole from Soufrière Hills Volcano, Montserrat: evidence for dynamic crystallizationtextural coarsening cycles. Journal of Petrology 44, 1401–1411. Iezzi, G., Mollo, S., Ventura, G., Cavallo, A., Romano, C., 2008. Experimental solidification of anhydrous latitic and trachytic melts at different cooling rates: the role of nucleation kinetics. Chemical Geology 253, 91–101. Iezzi, G., Mollo, S., Ventura, G., 2009. Solidification behaviour of natural silicate melts and volcanological implications. In: Lewis, N., Moretti, A. (Eds.), Volcanoes: Formation, Eruptions and Modelling. Nova publishers, New York, pp. 127–151. Kerr, R.C., Lister, J.R., 1991. The effects of shape on crystal settling and on the rheology of magmas. Journal of Geology 99, 457–467. Kirkpatrick, R.J., 1981. Kinetics of crystallization of igneous rocks: In: Lasaga, A.C., Kirkpatrick, R.J. (Eds.), Reviews in Mineralogy, 8, pp. 321–395. Kirkpatrick, R.J., 1983. Theory of nucleation in silicate melts. American Mineralogist 68, 66–77. Kostov, I., Kostov, R.I., 1999. Crystal Habits of Minerals. Bulgarian Academic Monographs, Sophia. Lasaga, A.C., 1997. Kinetic Theory in the Earth Sciences. Princeton University Press, Princeton, NY. Lofgren, G., 1980. In: Hargraves, R.B. (Ed.), Experimental Studies on the Dynamic Crystallisation of Silicate Melts. Princeton University Press, Princeton, pp. 487–565. Lofgren, G., 1983. Effect of heterogeneous nucleation on basaltic textures: a dynamic crystallization study. Journal of Petrology 24, 229–255. Marsh, B.D., 1998. On the interpretation of crystal size distributions in magmatic systems. Journal of Petrology 39, 553–599. Martel, C., Schmidt, B., 2003. Decompression experiments as an insight into ascent rates of silicic magmas. Contribution to Mineralogy and Petrology 144, 397–415. Mattioli, M., Renzulli, A., Menna, M., Holm, P.M., 2006. Rapid ascent and contamination of magmas through the thick crust of the CVZ (Andes, Ollague region): evidence from a nearly aphyric high-K andesite with skeletal olivines. Journal of Volcanology and Geothermal Research 158, 87–105. Mollo, S., Del Gaudio, P., Ventura, G., Iezzi, G., Scarlato, P., 2010. Dependence of clinopyroxene composition on cooling rate in basaltic magmas: implications for thermobarometry. Lithos 118, 302–312. Mollo, S., Putirka, K., Iezzi, G., Del Gaudio, P., Scarlato, P., 2011. Plagioclase-melt (dis) equilibrium due to cooling dynamics: implications for thermometry, barometry and hygrometry. Lithos. doi:10.1016/j.lithos.2011.02.008. Naney, M.T., Swanson, S.E., 1980. The effect of Fe and Mg on crystallization in granitic systems. American Mineralogist 65, 639–653. Neri, A., 1998. A local heat transfer analysis of lava cooling in the atmosphere: application to thermal diffusion-dominated lava flows. Journal of Volcanology and Geothermal Research 81, 215–243. Phillpotts, A.R., Shi, J., Brustman, C., 1998. Role of plagioclase crystal chains in the differentiation of partly crystallised magma. Nature 395, 343–346. Pupier, E., Duchene, S., Toplis, M.J., 2007. Experimental quantification of plagioclase crystal size distribution during cooling of a basaltic liquid. Contribution to Mineralogy and Petrology 155, 555–570. Richet, P., 2002. Enthalpy, volume and structural relaxation in glass-forming silicate melts. Journal of Thermal Analysis and Calorimetry 69, 739–750. Roskosz, M., Toplis, M.J., Besson, P., Richet, P., 2005. Nucleation mechanisms: a crystal chemical investigation of phases forming in highly supercooled aluminosilicate liquids. Journal of Non-Crystalline Solids 351, 1266–1282. Roskosz, M., Toplis, M.J., Richet, P., 2006. Kinetic vs. thermodynamic control of nucleation and growth in molten silicates. J Non-Cryst Solids 352, 180–184. Schiavi, F., Walte, N., Keppler, H., 2009. First in-situ observation of the crystallization processes in a basaltic–andesitic melt with the moissanite cell. Geology 37, 963–966. Schmelzer, J.W.P., 2003. Kinetic and thermodynamic theories of nucleation. Materials Physics and Mechanics 6, 21–33. Sharp, T.G., Stevenson, R.J., Dingwell, D.B., 1996. Microlites and “nanolites” in rhyolitic glass: microstructural and chemical characterisation. Bulletin of Volcanology 57, 631–640. Stewart, M.L., Fowler, A.D., 2001. The nature and occurrence of discrete zoning in plagioclase from recently erupted andesitic volcanic rocks, Montserrat. Journal of Volcanology and Geothermal Research 106, 243–253. Sunagawa, I., 1992. In situ investigation of nucleation, growth, and dissolution of silicate crystals at high temperatures. Annual Review of Earth and Planetary Sciences 20, 113–142. Swanson, S.E., 1977. Relation of nucleation and crystal-growth rate to the development of granitic textures. American Mineralogist 62, 966–977. Tamura, Y., Yuhara, M., Ishii, T., Irino, N., Shukuno, H., 2003. Andesites and dacites from Daisen Volcano, Japan: partial-to-total remelting of an andesite magma body. Journal of Petrology 12, 2243–2260. Tsuchiyama, A., 1983. Crystallization kinetics in the system CaMgSi2O6–CaAl2Si2O8: the delay in nucleation of diopside and anorthite. American Mineralogist 68, 687–698. Villeneuve, N., Neuville, D.R., Boivin, P., Bachèlery, P., Richet, P., 2008. Magma crystallization and viscosity: a study of molten basalts from the Piton de la Fournaise volcano (La Réunion island). Chemical Geology 256, 241–250. Walton, E.L., Herd, C.D.K., 2007. Dynamic crystallization of shock melts in Allan hills 77005: implications for melt pocket formation in Martian meteorites. Geochimica et Cosmochimica Acta 71, 5267–5285. Webb, S.L., 2005. Silicate melts at extreme conditions: In: Miletich, R. (Ed.), EMU Notes in Mineralogy, 7, pp. 64–95. Xu, Z., Zhang, Y., 2002. Quench rates in water, air and liquid nitrogen and inference of temperature in volcanic eruption columns. Earth and Planetary Science Letters 200, 315–330. Zhang, Y., 2008. Geochemical Kinetic. Princeton University Press, Princeton, NY. Zhou, W., Van der Voo, R., Peacor, D.R., Zhang, Y., 2000. Variable Ti-content and grain size of titanomagnetite as a function of cooling rate in very young MORB. Earth and Planetary Science Letters 179, 9–20. Zieg, M.J., Marsh, B.D., 2002. Crystal size distribution and scaling laws in the quantification of igneous textures. Journal of Petrology 43, 85–101.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorIezzi, G.en
dc.contributor.authorMollo, S.en
dc.contributor.authorTorresi, G.en
dc.contributor.authorVentura, G.en
dc.contributor.authorCavallo, A.en
dc.contributor.authorScarlato, P.en
dc.contributor.departmentUniversità G. d'Annunzioen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentUniversità G. d'Annunzioen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità degli studi G. D'annunzio, Chieti Pescara, Italy-
crisitem.author.deptUniversità di Roma "La Sapienza"-
crisitem.author.deptUniversità G. d'Annunzio-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0001-9388-9985-
crisitem.author.orcid0000-0003-1933-0192-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
5_Iezzi et al. 2011_Chemical Geology_283_261-273.pdf3.25 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

56
checked on Feb 10, 2021

Page view(s)

154
checked on Apr 24, 2024

Download(s)

28
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric