Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7247
DC FieldValueLanguage
dc.contributor.authorallMollo, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallPutirka, K.; California State Universityen
dc.contributor.authorallIezzi, G.; Università G. d'Annunzioen
dc.contributor.authorallDel Gaudio, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallScarlato, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.date.accessioned2011-12-20T14:10:54Zen
dc.date.available2011-12-20T14:10:54Zen
dc.date.issued2011-02-22en
dc.identifier.urihttp://hdl.handle.net/2122/7247en
dc.description.abstractThe compositional variation of plagioclase and the partitioning of major elements between plagioclase and melt have been experimentally measured as a function of the cooling rate. Crystals were grown from a basaltic melt at a pressure of 500 MPa under (i) variable cooling rates of 0.5, 2.1, 3, 9.4, and 15 °C/min from 1250 °C down to 1000 °C, (ii) quenching temperatures of 1025, 1050, 1075, 1090, and 1100 °C at the fixed cooling rate of 0.5 °C/min, and (iii) isothermal temperatures of 1000, 1025, 1050, 1075, 1090, and 1100 °C. Our results show that euhedral, faceted plagioclases form during isothermal and slower cooling experiments exhibiting idiomorphic tabular shapes. In contrast, dendritic shapes are observed from faster cooled charges. As the cooling rate is increased, concentrations of Al+Ca+Fe+Mg increase and Si+Na+K decrease in plagioclase favoring higher An and lower Ab+Or contents. Significant variations of pl–liqKd are also observed by the comparison between isothermal and cooled charges; notably, pl–liqKdAb–An, pl–liqKdCa–Na and pl–liqKdFe–Mg progressively change with increasing cooling rate. Therefore, crystal–melt exchange reactions have the potential to reveal the departure from equilibrium for plagioclase-bearing cooling magmas. Finally, thermometers, barometers, and hygrometers derived through the plagioclase–liquid equilibria have been tested at these non-equilibrium experimental conditions. Since such models are based on assumption of equilibrium, any form of disequilibrium will yield errors. Results show that errors on estimates of temperature, pressure, and melt-water content increase systematically with increasing cooling rate (i.e. disequilibrium condition) depicting monotonic trends towards drastic overestimates. These trends are perfectly correlated with those of pl–liqKdCa–Na, pl–liqKdAb–An, and pl–liqKdFe–Mg, thus demonstrating their ability to test (dis)equilibrium conditions.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofLithosen
dc.relation.ispartofseries/125 (2011)en
dc.subjectCooling rateen
dc.subjectPartition coefficientsen
dc.subjectThermometersen
dc.titlePlagioclase–melt (dis)equilibrium due to cooling dynamics: Implications for thermometry, barometry and hygrometryen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber221–235en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrologyen
dc.identifier.doi10.1016/j.lithos.2011.02.008en
dc.relation.referencesAigner-Torres, M., Blundy, J., Ulmer, P., Pettke, T., 2007. Laser ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts: an experimental approach. Contribution to Mineralogy and Petrology 153, 647–667. Baginski, B., Dzierzanowski, P., Macdonald, R., Upton, B.G.J., 2009. Complex relationships among coexisting pyroxenes: the Paleogene Eskdalemuir dyke, Scotland. Mineralogical Magazine 73, 929–942. Baker, D.R., 2008. The fidelity of melt inclusions as records of melt composition. Contributions to Mineralogy and Petrology 157, 377–395.Baschek, G., Johannes, W., 1995. The estimation of NaSi–CaAl interdiffusion rates in peristerite by homogenization experiments. European Journal of Mineralogy 7, 295–307. Bindeman, I.N., Davis, A.M., Drake, M.J., 1998. Ion microprobe study of plagioclase– basalt partition experiments at natural concentration levels of trace elements. Geochimica et Cosmochimica Acta 62, 1175–1193. Bindeman, I., Davis, A., 2000. Trace element partitioning between plagioclase and melt: investigation of dopant influence on partition behavior. Geochimica et Cosmochimica Acta 64, 2863–2878. Brandeis, G., Jaupart, C., Allegre, C.J., 1984. Nucleation crystal growth and the thermal regime of cooling magmas. Journal of Geophysical Research 89, 10161–10177. Brugger, C.R., Hammer, J.E., 2010. Crystallization kinetics in continuous decompression experiments: implications for interpreting natural magma ascent processes. Journal of Petrology 51, 1941–1965. Chistyakova, S., Latypov, R., 2009. On the development of internal chemical zonation in small mafic dykes. Geological Magazine 147, 1–12. Conte, A.M., Perinelli, C., Trigila, R., 2006. Cooling kinetics experiments on different Stromboli lavas: effects on crystal morphologies and phases compositions. Journal of Volcanology and Geothermal Research 155, 179–200. Cooper, K.M., Reid, M.R., 2003. Re-examination of crystal-ages in recent Mount St. Helens lavas: implications formagma reservoir processes. Earth and Planetary Science Letters 213, 149–167. Del Gaudio, P., Mollo, S., Ventura, G., Iezzi, G., Taddeucci, J., Cavallo, A., 2010. Cooling rate-induced differentiation in anhydrous and hydrous basalts at 500 MPa: implications for the storage and transport of magmas in dikes. Chemical Geology 270, 164–178. Drake, M.J., 1975. The oxidation state of europium as an indicator of oxygen fugacity. Geochimica et Cosmochimica Acta 39, 55–64. Freda, C., Gaeta, M., Misiti, V., Mollo, S., Dolfi, D., Scarlato, P., 2008. Magma–carbonate interaction: an experimental study on ultrapotassic rocks from Alban Hills (Central Italy). Lithos 101, 397–415. Gaetani, G.A., Grove, T.L., Bryan, W.B., 1994. Experimental phase relations of basaltic andesite from Hole 839b under hydrous and anhydrous conditions. In: Hawkins, J., Parsons, L., Allan, J., et al. (Eds.), Proc ODP Sci Results 135. Ocean Drilling Program, College Station TX, pp. 557–564. Ghiorso, M.S., Sack, R.O., 1995. Chemical mass-transfer in magmatic processes 4. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilbria in magmatic systems at elevated temperatures and pressures. Contribution to Mineralogy and Petrology 119, 197–212. Grove, T.L., Gerlach, D.C., Sando, T.W., 1982. Origin of calc-alkaline series lavas at Medicine Lake volcano by fractionation, assimilation and mixing. Contribution to Mineralogy and Petrology 80, 162–180. Grove, T.L., Donnelly, J.M., Nolan, T.H., 1997. Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake volcano, N. California. Contribution to Mineralogy and Petrology 127, 205–223. Hammer, J.E., 2006. Influence of fO2 and cooling rate on the kinetics and energetics of Fe-rich basalt crystallization. Earth and Planetary Science Letters 248, 618–637. Hammer, J.E., 2008. Experimental studies of the kinetics and energetics of magma crystallization. In: Putirka, K.D., Tepley, F.J. (Eds.), Minerals, Inclusions and Volcanic Processes: Reviews in Mineralogy and Geochemistry, 69, pp. 9–59. Iezzi, G., Mollo, S., Ventura, G., Cavallo, A., Romano, C., 2008. Experimental solidification of anhydrous latitic and trachytic melts at different cooling rates: the role of nucleation kinetics. Chemical Geology 253, 91–101. Iezzi, G., Mollo, S., Torresi, G., Ventura, G., Cavallo, A., Scarlato, P., 2011. Experimental solidification of an andesitic melt by cooling. Chemical Geology 283, 261–273. Kirkpatrick, R.J., 1981. Kinetics of crystallization of igneous rocks. Reviews in Mineralogy and Geochemistry 8, 321–395. Klügel, A., Klein, F., 2006. Complex magma storage and ascent at embryonic submarine volcanoes from the Madeira Archipelago Geology, May, 2006, 34, pp. 337–340. Kress, V.C., Carmichael, I.S.E., 1991. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contributions to Mineralogy and Petrology 108, 82–92. Kushiro, I., Walter, M.J., 1998. Mg–Fe partitioning between olivine and mafic– ultramafic melts. Geophysical Research Letters 25, 2337–2340. Kushiro, I.,Mysen, B.O., 2002. A possible effect of melt structure on theMg–Fe2+ partitioning between olivine andmelt. Geochimica et Cosmochimica Acta 66, 2267–2272. Lange, R.A., Frey, H.M., Hector, J., 2009. A thermodynamic model for the plagioclaseliquid hygrometer/thermometer. American Mineralogist 94, 494–506. Lasaga, A.C., 1997. Kinetic Theory in the Earth Sciences. Princeton University Press, Princeton, New Jersey, p. 811. Lindsley, D.H., Smith, D., 1971. Chemical variations in the feldspars. Carnegie Institute of Washington Yearb 69, 274–278. Liu, M., Yund, R.A., 1992. NaSi–CaAl interdiffusion in plagioclase. American Mineralogist 77, 275–283. Lofgren, G.E., Huss, G.R., Wasserburg, G.J., 2006. An experimental study of trace-element partitioning between Ti–Al-clinopyroxene and melt: equilibrium and kinetic effects including sector zoning. American Mineralogist 91, 1596–1606. Longhi, J., Walker, D., Hays, J.F., 1976. Fe and Mg in plagioclase. Proceedings of the 7th Lunar Science Conference, pp. 1281–1300. Loomis, T.P., 1981. An investigation of disequilibrium growth processes of plagioclase in the system anorthite–albite–water by methods of numerical simulation. Contributions to Mineralogy and Petrology 81, 219–229. Loomis, T.P., Welber, P.W., 1982. Crystallization processes in the rocky hill granodiorite pluton, California: an interpretation based on compositional zoning of plagioclase. Contributions to Mineralogy and Petrology 81, 230–239.Lundgaard, K.L., Tegner, C., 2004. Partitioning of ferric and ferrous iron between plagioclase and silicate melt. Contributions to Mineralogy and Petrology 147, 470–483. Mahood, G.A., Baker, D.R., 1986. Experimental constraints on depth of fractionation of mildly alkalic basalts and associated felsic rocks: Pantelleria, Strait of Sicily. Contributions to Mineralogy and Petrology 93, 251–264. Mysen, B.O., Richet, P., 2005. Silicate glasses and melts: properties and structure. Developments in Geochemistry, 10. Elsevier, Amsterdam. Mollo, S., Del Gaudio, P., Ventura, G., Iezzi, G., Scarlato, P., 2010a. Dependence of clinopyroxene composition on cooling rate in basaltic magmas: implications for thermobarometry. Lithos 118, 302–312. Mollo, S., Gaeta, M., Freda, C., Di Rocco, T., Misiti, V., Scarlato, P., 2010b. Carbonate assimilation in magmas: a reappraisal based on experimental petrology. Lithos 114, 503–514. Mungall, J.E., 2007. Crustal contamination of picritic magmas during transport through dikes: the Expo Intrusive Suite, Cape Smith Fold Belt, New Quebec. Journal of Petrology 48, 1021–1039. Muncill, G.E., Lasaga, A.C., 1987. Crystal-growth kynetics of plagioclase in igneous systems: one atmosphere experiments and approximation of a simplified growth model. American Mineralogist 72, 299–311. Phinney, W.C., 1992. Partition coefficients for iron between plagioclase and basalt as a function of oxygen fugacity: implications for Archean and lunar anorthosites. Geochimica et Cosmochimica Acta 56, 1885–1895. Pietranik, A., Koepke, J., Puziewicza, J., 2006. Crystallization and resorption in plutonic plagioclase: implications on the evolution of granodiorite magma (Gęsiniec granodiorite, Strzelin Crystalline Massif, SW Poland). Lithos 86, 260–280. Putirka, K.D., 2005. Igneous thermometers and barometers based on plagioclase+ liquid equilibria: test of some existing models and new calibrations. American Mineralogist 90, 336–346. Putirka, K.D., 2008. Thermometers and barometers for volcanic systems. In: Putirka, K. D., Tepley, F. (Eds.), Minerals, Inclusions, and Volcanic Processes: Reviews in Mineralogy and Geochemistry, 69, pp. 61–120. Putirka, K., Condit, C., 2003. A cross section of a magma conduit system at the margins of the Colorado Plateau. Geology 31, 701–704. Pupier, E., Duchene, S., Toplis, M.J., 2008. Experimental quantification of plagioclase crystal size distribution during cooling of a basaltic liquid. Contributions to Mineralogy and Petrology 155, 555–570. Sato, H., 1989. Mg–Fe partitioning between plagioclase and liquid in basalts of Hole 540B, ODP Leg 111: a study of melting at 1 atm. Proceedings of the Ocean Drill Program Science Research 11, 17–26. Singer, B.S., Dungan, M.A., Layne, G.D., 1995. Textures and Sr, Ba, Mg, Fe, K and Ti compositional profiles in volcanic plagioclase: clues to the dynamics of calcalkaline magma chambers. American Mineralogist 80, 776–798. Sisson, T.W., Grove, T.L., 1993. Experimental investigations of the role of water in calcalkaline differentiation and subduction zonemagmatism. Contributions to Mineralogy and Petrology 113, 143–166. Smith, J.V., 1983. Phase equilibria of plagioclase, In: Ribbe, P.H. (Ed.), Feldspar Mineralogy, 2nd edition. : Reviews in Mineralogy, 2. Mineralogical Society ofAmerica,Washington DC, pp. 223–239. Smith, J.Y., Brown, W.L., 1988. Feldspar minerals vol. I: Crystal structures, physical, chemical, and microtextural properties, 2nd edition. Springer, Berlin, Heidelberg New, p. 828. Stewart, M.L., Fowler, A.D., 2001. The nature and occurrence of discrete zoning in plagioclase from recently erupted andesitic volcanic rocks, Montserrat. Journal of Volcanology and Geothermal Research 106, 243–253. Streck, M.J., 2008. Mineral textures and zoning as evidence for open system processes. In: Putirka, K.D., Tepley, F. (Eds.), Minerals, Inclusions, and Volcanic Processes: Reviews in Mineralogy and Geochemistry, 69, pp. 595–622. Sugawara, T., 2001. Ferric iron partitioning between plagioclase and silicate liquid: thermodynamics and petrological applications. Contributions to Mineralogy and Petrology 141, 659–686. Tegner, C., 1997. Iron in plagioclase as a monitor of the differentiation of the Skaergaard intrusion. Contributions to Mineralogy and Petrology 128, 45–51. Tormey, D.R., Grove, T.L., Bryan, W.B., 1987. Experimental petrology of normal MORB near the Kane fracture zone: 22–25°N, mid-Atlantic ridge. Contributions to Mineralogy and Petrology 96, 121–139. Ujike, O., 1982. Microprobe mineralogy of plagioclase, clinopyroxene and amphibole as records of cooling rate in the Shirotori-Hiketa dike swarm, northeastern Shikoku, Japan. Lithos 15, 281–293. Ussler, W., Glazner, A.F., 1989. Phase equilibria along a basalt–rhyolite mixing line: implications for the origin of calc-alkaline intermediate magmas. Contributions to Mineralogy and Petrology 101, 232–244. Walker, G.P.L., Eyre, P.R., 1995. Dike complexes in American Samoa. Journal of Volcanology and Geothermal Research 69, 241–254. Watson, E.B., Müller, T., 2009. Non-equilibrium isotopic and elemental fractionation during diffusion-controlled crystal growth under static and dynamic conditions. Chemical Geology 267 (3-4), 111–124. doi:10.1016/j.chemgeo.2008.10.036. Wilke, M., Behrens, H., 1999. The dependence of the partitioning of iron and europium between plagioclase and hydrous tonalitic melt on oxygen fugacity. Contributions to Mineralogy and Petrology 137, 102–114. Xue, S., Morse, S.A., 1994. Chemical characteristics of plagioclase and pyroxene megacrysts and their significance to the petrogenesis of the Nain anorthosites. Geochimica et Cosmochimica Acta 58, 4317–4331.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMollo, S.en
dc.contributor.authorPutirka, K.en
dc.contributor.authorIezzi, G.en
dc.contributor.authorDel Gaudio, P.en
dc.contributor.authorScarlato, P.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentCalifornia State Universityen
dc.contributor.departmentUniversità G. d'Annunzioen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità di Roma "La Sapienza"-
crisitem.author.deptUniversity of California-
crisitem.author.deptUniversità degli studi G. D'annunzio, Chieti Pescara, Italy-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione ONT, Roma, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.orcid0000-0002-0977-1237-
crisitem.author.orcid0000-0003-1933-0192-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
4_Mollo et al., 2011_Lithos_125_221-235.pdfMain article1.9 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

50
checked on Feb 10, 2021

Page view(s) 50

241
checked on Apr 24, 2024

Download(s)

34
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric