Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7246
DC FieldValueLanguage
dc.contributor.authorallMollo, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallTuccimei, P.; Università “Roma Tre"en
dc.contributor.authorallHeap, M.; CNRS, EOSTen
dc.contributor.authorallVinciguerra, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallSoligo, M.; Università “Roma Tre"en
dc.contributor.authorallCastelluccio, M.; Università “Roma Tre"en
dc.contributor.authorallScarlato, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.authorallDingwell, D.en
dc.date.accessioned2011-12-20T14:09:48Zen
dc.date.available2011-12-20T14:09:48Zen
dc.date.issued2011-07-22en
dc.identifier.urihttp://hdl.handle.net/2122/7246en
dc.description.abstractRadon anomalies are commonly observed prior to dynamic failure in the crust and are interpreted as cracking of the medium, thus attracting considerable attention in understanding the precursory phenomena of earthquakes and volcanic activity. In this study we have compared the starting radon emissions from low porosity crystalline lava (phonolite) samples with those from damaged and failed samples. The damaged sample was loaded up to just beyond the end of the linear elastic phase, as evidenced by the output of AE energy, the increase in total porosity and a decrease in P‐wave and S‐wave velocity relative to the intact sample. Whereas, the failed sample showed deformation behaviour characteristically brittle with increasing values of AE output and porosity as the sample approached macroscopic failure. Radon measurements have evidenced that dilatational microcracking of deformed sample produced no significant variation in radon emanation with respect to the intact sample. In contrast, after macroscopic failure, radon emanation drastically increased. Therefore, major finding from this study is that, in the case of low porosity and relatively high strength crystalline lavas, the development of a macroscopic fracture provides new large exhaling surface resulting in a substantial increase in radon emission rate.en
dc.language.isoEnglishen
dc.publisher.nameAmerican Geophysical Unionen
dc.relation.ispartofGeophysical Research Lettersen
dc.relation.ispartofseries/38 (2011)en
dc.subjectRadonen
dc.titleIncrease in radon emission due to rock failure: An experimental studyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberL14304en
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistryen
dc.identifier.doi10.1029/2011GL047962en
dc.relation.referencesCox, E. M., E. K. Cuff, and M. D. Thomas (1980), Variations of ground radon concentrations with activity of Kilauea volcano, Hawaii, Nature, 288, 74–76, doi:10.1038/288074a0. Fortin, J., S. Stanchits, S. Vinciguerra, and Y. Guéguen (2011), Influence of thermal and mechanical cracks on permeability and elastic wave velocities in a basalt from Mt. Etna volcano subjected to elevated pressure, Tectonophysics, 503, 60–74, doi:10.1016/j.tecto.2010.09.028. Hauksson, E. (1981), Radon content of groundwater as an earthquake precursor: Evaluation of worldwide data and physical basis, J. Geophys. Res., 86, 9397–9410, doi:10.1029/JB086iB10p09397. Heap, M. J., S. Vinciguerra, and P. G. Meredith (2009), The evolution of elastic moduli with increasing crack damage during cyclic stressing of a basalt from Mt. Etna volcano, Tectonophysics, 471, 153–160, doi:10.1016/j.tecto.2008.10.004. Heap, M. J., P. Baud, P. G. Meredith, S. Vinciguerra, A. F. Bell, and I. G. Main (2011), Brittle creep in basalt and its application to time‐dependent volcano deformation, Earth Planet. Sci. Lett., 307, 71–82, doi:10.1016/j. epsl.2011.04.035. Holub, R. F., and B. T. Brady (1981), The effect of stress on radon emanation from rock, J. Geophys. Res., 86, 1776–1784, doi:10.1029/ JB086iB03p01776. Igarashi, G., S. Saeki, N. Takahata, K. Sumikawa, S. Tasaka, Y. Sasaki, M. Takahashi, and Y. Sano (1995), Ground‐water radon anomaly before the Kobe earthquake in Japan, Science, 269, 60–61, doi:10.1126/science. 269.5220.60. Kerr, R. A. (1978), Earthquakes: Prediction proving elusive, Science, 200, 419–421, doi:10.1126/science.200.4340.419. Kerr, R. A. (1981), The mountain is behaving itself—For now, Science, 212, 1258–1259, doi:10.1126/science.212.4500.1258-a. King, C.‐Y. (1981), Do radon anomalies predict earthquakes?, Nature, 293, 262, doi:10.1038/293262a0. King, C.‐Y., N. Koizumi, and Y. Kitagawa (1995), Hydrogeochemical anomalies and the 1995 Kobe earthquake, Science, 269, 38–39, doi:10.1126/ science.269.5220.38. Kuo, T., K. Fan, H. Kuochen, Y. Han, H. Chu, and Y. Lee (2006), Anomalous decrease in groundwater radon before the Taiwan M 6.8 Chengkung earthquake, J. Environ. Radioact., 88, 101–106, doi:10.1016/j. jenvrad.2006.01.005. Linde, A. T., and I. S. Sacks (1998), Triggering of volcanic eruptions, Nature, 395, 888–890, doi:10.1038/27650. Roeloffs, E. (1999), Earth science: Radon and rock deformation, Nature, 399, 104–105, doi:10.1038/20072. Steinitz, G., Z. B. Begin, and N. Gazit‐Yaari (2003), Statistically significant relation between radon flux and weak earthquakes in the Dead Sea rift valley, Geology, 31, 505–508, doi:10.1130/0091-7613(2003) 031<0505:SSRBRF>2.0.CO;2. Tanaka, H. K. M., T. Nakano, S. Takahashi, J. Yoshida, andK.Niwa (2007a), Development of an emulsion imaging system for cosmic‐ray muon radiography to explore the internal structure of a volcano, Mt. Asama, Nucl. Instrum. Methods Phys. Res., Sect A, 575, 489–497, doi:10.1016/j. nima.2007.02.104. Tanaka,H. K. M., T.Nakano, S. Takahashi, J. Yoshida,M. Takeo, J.Oikawa, T. Ohminato, Y. Aoki, E. Koyama, H. Tsuji, and K. Niwa (2007b), High resolution imaging in the inhomogeneous crust with cosmic‐ray muon radiography: The density structure below the volcanic crater floor of Mt. Asama, Japan, Earth Planet. Sci. Lett., 263, 104–113, doi:10.1016/j. epsl.2007.09.001. Trique, M., P. Richon, F. Perrier, J. P. Avouac, and J. C. Sabroux (1999), Radon emanation and electric potential variations associated with transient deformation near reservoir lakes, Nature, 399, 137–141, doi:10.1038/20161. Tsunogai, U., and H. Wakita (1995), Precursory chemical changes in ground water: Kobe earthquake, Japan, Science, 269, 61–63, doi:10.1126/science. 269.5220.61. Tuccimei, P., M. Castelluccio, M. Soligo, and M. Moroni (2009), Radon exhalation rates of building materials: Experimental, Analytical protocol and classification criteria, in Building Materials: Properties, Performance and Applications, edited by D. N. Cornejo and J. L. Haro, pp. 259–273, Nova Sci., Hauppauge, N. Y. Tuccimei, P., S. Mollo, S. Vinciguerra, M. Castelluccio, and M. Soligo (2010), Radon and thoron emission from lithophysae‐rich tuff under increasing deformation: An experimental study, Geophys. Res. Lett., 37, L05305, doi:10.1029/2009GL042134. Tuccimei, P., M. Castelluccio, S. Moretti, S. Mollo, S. Vinciguerra, and P. Scarlato (2011), Thermal enhancement of radon emission from geological materials. Implications for laboratory experiments on rocks under increasing deformation, in Horizons in Earth Science Research, vol. 4, edited by B. Veress and J. Szigethy, Nova Sci., Hauppauge, N. Y., in press. Wakita, H., Y. Nakamura, K. Notsu, M. Noguchi, and T. Asada (1980), Radon anomaly: A possible precursor of the 1978 Izu‐Oshima‐kinkai earthquake, Science, 207, 882–883, doi:10.1126/science.207.4433.882. Zhu, W., and T. Wong (1997), The transition from brittle faulting to cataclastic flow in porous sandstones: Permeability evolution, J. Geophys. Res., 102, 3027–3041, doi:10.1029/96JB03282.en
dc.description.obiettivoSpecifico2.3. TTC - Laboratori di chimica e fisica delle rocceen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMollo, S.en
dc.contributor.authorTuccimei, P.en
dc.contributor.authorHeap, M.en
dc.contributor.authorVinciguerra, S.en
dc.contributor.authorSoligo, M.en
dc.contributor.authorCastelluccio, M.en
dc.contributor.authorScarlato, P.en
dc.contributor.authorDingwell, D.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentUniversità “Roma Tre"en
dc.contributor.departmentCNRS, EOSTen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
dc.contributor.departmentUniversità “Roma Tre"en
dc.contributor.departmentUniversità “Roma Tre"en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptUniversità di Roma "La Sapienza"-
crisitem.author.deptUniversità “Roma Tre"-
crisitem.author.deptUCL,UK-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptUniversità “Roma Tre"-
crisitem.author.deptUniversità Roma Tre-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia-
crisitem.author.deptLudwig Maximilians University, Department of Earth and Environmental Sc., Theresienstr. 41/III,D-80333, Munich, Germany-
crisitem.author.orcid0000-0003-1933-0192-
crisitem.author.orcid0000-0002-3332-789X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
3_Mollo et al. 2011_GRL_38_L14304.pdfMain article1.5 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 20

34
checked on Feb 10, 2021

Page view(s) 50

158
checked on Mar 27, 2024

Download(s)

32
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric