Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7192
DC FieldValueLanguage
dc.contributor.authorallAiuppa, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallShinohara, H.; Geological Survey of Japan, AIST, Tsukuba, Japan.en
dc.contributor.authorallTamburello, G.; Dipartimento DiSTeM, Università di Palermo, Palermo, Italy.en
dc.contributor.authorallGiudice, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallLiuzzo, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.authorallMoretti, R.; Centro Interdipartimentale di Ricerche in Ingegneria Ambientale, Seconda Università di Napoli, Naples, Italy.en
dc.date.accessioned2011-11-16T10:04:21Zen
dc.date.available2011-11-16T10:04:21Zen
dc.date.issued2011en
dc.identifier.urihttp://hdl.handle.net/2122/7192en
dc.description.abstractWe report here on the first hydrogen determinations in the volcanic gas plume of Mount Etna, in Italy, which we obtained during periodic field surveys on the volcano’s summit area with an upgraded MultiGAS. Using a specific (EZT3HYT) electrochemical sensor, we resolved H2 concentrations in the plume of 1–3 ppm above ambient (background) atmosphere and derived H2‐SO2 and H2‐H2O plume molar ratios of 0.002–0.044 (mean 0.013) and 0.0001–0.0042 (mean 0.0018), respectively. Taking the above H2‐SO2 ratios in combination with a time‐averaged SO2 flux of 1600 Gg yr−1, we evaluate that Etna contributes a time‐averaged H2 flux of ∼0.65 Gg yr−1, suggesting that the volcanogenic contribution to the global atmospheric H2 budget (70,000–100,000 Gg yr−1) is marginal. We also use our observed H2‐H2O ratios to propose that Etna’s passive plume composition is (at least partially) representative of a quenched (temperatures between 750°C and 950°C) equilibrium in the gas‐magma system, at redox conditions close to the nickel‐nickel oxide (NNO) mineral buffer. The positive dependence between H2‐SO2, H2‐H2O, and CO2‐SO2 ratios suggests that H2 is likely supplied (at least in part) by deeply rising CO2‐rich gas bubbles, fluxing through a CO2‐depleted shallow conduit magma.en
dc.language.isoEnglishen
dc.publisher.nameAGUen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/116(2011)en
dc.subjectHydrogenen
dc.subjectMount Etnaen
dc.subjectOpen-vent volcanoen
dc.subjectplumeen
dc.titleHydrogen in the gas plume of an open‐vent volcano, Mount Etna, Italyen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB10204en
dc.subject.INGV01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effectsen
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical explorationen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.01. Gasesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.identifier.doi10.1029/2011JB008461en
dc.relation.referencesAiuppa, A., S. Inguaggiato, A. J. S.McGonigle, M. O’Dwyer, C. Oppenheimer, M. J. Padgett, D. Rouwet, and M. Valenza (2005), H2S fluxes from Mount Etna, Stromboli and Vulcano (Italy) and implications for the global volcanic sulfur budget, Geochim. Cosmochim. Acta, 69, 1861–1871, doi:10.1016/j.gca.2004.09.018. Aiuppa, A., A. Franco, R. von Glasow, A. G. Allen, W. D’Alessandro, T. A. Mather, D. M. Pyle, and M. Valenza (2007a), The tropospheric processing of acidic gases and hydrogen sulphide in volcanic gas plumes as inferred from field and model investigations, Atmos. Chem. Phys., 7, 1441–1450, doi:10.5194/acp-7-1441-2007. Aiuppa, A., R. Moretti, C. Federico, G. Giudice, S. Gurrieri, M. Liuzzo, P. Papale, H. Shinohara, and M. Valenza (2007b), Forecasting Etna eruptions by real‐time observation of volcanic gas composition, Geology, 35, 1115–1118, doi:10.1130/G24149A.1. Aiuppa, A., G. Giudice, S. Gurrieri, M. Liuzzo, M. Burton, T. Caltabiano, A. J. S. McGonigle, G. Salerno, H. Shinohara, and M. Valenza (2008), Total volatile flux from Mount Etna, Geophys. Res. Lett., 35, L24302, doi:10.1029/2008GL035871. Aiuppa, A., A. Bertagnini, N. Métrich, R. Moretti, A. Di Muro, M. Liuzzo, and G. Tamburello (2010a), A model of degassing for Stromboli volcano, Earth Planet. Sci. Lett., 295, 195–204, doi:10.1016/j.epsl.2010.03.040. Aiuppa, A., et al. (2010b), Patterns in the recent (2007–2008) activity of Mount Etna volcano investigated by integrated geophysical and geochemical observations, Geochem. Geophys. Geosyst., 11, Q09008, doi:10.1029/ 2010GC003168. Allard, P. (1986), Geochimique isotopique et origine de l’eau, du carbone et du sufre dans le gaz volcanique: Zones de rift, marges continentales et arcs insulaires, Ph.D. thesis, Univ. Paris 7, Paris. Allard, P. (1997), Endogenous magma degassing and storage at Mount Etna, Geophys. Res. Lett., 24, 2219–2222, doi:10.1029/97GL02101. Allard, P., et al. (1991), Eruptive and diffuse emissions of CO2 from Mount Etna, Nature, 351, 387–391, doi:10.1038/351387a0. Carmichael, I. S. E., and M. S. Ghiorso (1986), Oxidation‐reduction relations in basic magma: A case for homogeneous equilibria, Earth Planet. Sci. Lett., 78, 200–210, doi:10.1016/0012-821X(86)90061-0. Collins, S. J., D. M. Pyle, and J. Maclennan (2009), Melt inclusions track pre‐eruption storage and dehydration of magmas at Etna, Geology, 37, 571–574, doi:10.1130/G30040A.1. Ehhalt, D. H., and F. Rohrer (2009), The tropospheric cycle of H2: A critical review, Tellus, Ser. B, 61, 500–535, doi:10.1111/j.1600-0889.2009.00416.x. Fudali, R. F. (1965), Oxygen fugacities of basaltic and andesitic magmas, Geochim. Cosmochim. Acta, 29, 1063–1075, doi:10.1016/0016-7037(65) 90103-1. Gerlach, T. M. (1982), Interpretation of volcanic gas data from tholeiitic and alkaline mafic lavas, Bull. Volcanol., 45, 235–244, doi:10.1007/ BF02597736. Giammanco, S., S. Inguaggiato, and M. Valenza (1998), Soil and fumarole gases of Mount Etna: Geochemistry and relations with volcanic activity, J. Volcanol. Geotherm. Res., 81, 297–310, doi:10.1016/S0377-0273(98) 00012-2. Giggenbach, W. F. (1987), Redox processes governing the chemistry of fumarolic gas discharges fromWhite Island, New Zealand, Appl. Geochem., 2, 143–161, doi:10.1016/0883-2927(87)90030-8. Giggenbach, W. F. (1996), Chemical composition of volcanic gases, in Monitoring and Mitigation of Volcanic Hazards, edited by R. Scarpa and R. I. Tilling, pp. 221–256, Springer, Berlin. Hernández, P., N. Pérez, J. Salazar, M. Sato, K. Notsu, and H. Wakita (2000), Soil gas CO2, CH4 and H2 distribution in and around Las Cañadas caldera, Tenerife, Canary Islands, Spain, J. Volcanol. Geotherm. Res., 103, 425–438, doi:10.1016/S0377-0273(00)00235-3. Hirabayashi, J., J. Ossaka, and T. Ozawa (1986), Geochemical study on volcanic gases at Sakurajima volcano, Japan, J. Geophys. Res., 91, 12,167–12,176, doi:10.1029/JB091iB12p12167. Huebner, J. S., and M. Sato (1970), The oxygen fugacity‐temperature relationships of manganese and nickel oxide buffers, Am. Mineral., 55, 934–952. Melián, G. V., I. Galindo, N. M. Pérez, P. A. Hernández, M. Fernández, C. Ramírez, R. Mora, and G. E. Alvarado (2007), Diffuse emission of hydrogen from Poás volcano, Costa Rica, America Central, Pure Appl. Geophys., 164, 2465–2487, doi:10.1007/s00024-007-0282-8. Métrich, N., and R. Clocchiatti (1996), Sulfur abundance and its speciation in oxidized alkaline melts, Geochim. Cosmochim. Acta, 60, 4151–4160, doi:10.1016/S0016-7037(96)00229-3. Métrich, N., P. Allard, N. Spillardet, D. Andronico, and M. Burton (2004), 2001 flank eruption of the alkali‐ and volatile‐rich primitive basalt responsible for Mount Etna’s evolution in the last three decades, Earth Planet. Sci. Lett., 228, 1–17, doi:10.1016/j.epsl.2004.09.036. Moretti, R., and P. Papale (2004), On the oxidation state and volatile behaviour in multicomponent gas‐melt equilibria, Chem. Geol., 213, 265–280, doi:10.1016/j.chemgeo.2004.08.048. Neri, M., F. Mazzarini, S. Tarquini, M. Bisson, I. Isola, B. Behncke, and M. T. Pareschi (2008), The changing face of Mount Etna’s summit area documented with lidar technology, Geophys. Res. Lett., 35, L09305, doi:10.1029/2008GL033740. Novelli, P. C., P. M. Lang, K. A. Masarie, D. F. Hurst, R. Myers, and J. W. Elkins (1999), Molecular hydrogen in the troposphere: Global distribution and budget, J. Geophys. Res., 104, 30,427–30,444, doi:10.1029/ 1999JD900788. Oppenheimer, C. (2003), Volcanic degassing, in Treatise on Geochemisty, vol. 3, The Crust, edited by R. L. Rudnick, pp. 123–166, Elsevier, Oxford, U. K. Sato, M. (1978), Oxygen fugacity of basaltic magma and the role of gasforming elements, Geophys. Res. Lett., 5, 447–449, doi:10.1029/ GL005i006p00447. Sato, M. (1988), Continuous monitoring of hydrogen in volcanic areas: Petrological rationale and early experiments, Bull. Mineral. Rend. Soc. Ital. Mineral. Petrol., 43, 1265–1281. Sato, M., and K. McGee (1981), Continuous monitoring of hydrogen on the south flank of Mount St. Helens, U.S. Geol. Surv. Prof. Pap., 1250, 209–219. Sato, M., and J. G. Moore (1973), Oxygen and sulfur fugacities of magmatic gases directly measured in active vents of Mount Etna, Philos. Trans. R. Soc. London, Ser. A, 274, 137–146, doi:10.1098/rsta.1973.0033. Sato, M., and T. C. Wright (1966), Oxygen fugacities directly measured in magmatic gases, Science, 153, 1103–1105, doi:10.1126/science.153. 3740.1103. Shinohara, H., A. Aiuppa, G. Giudice, S. Gurrieri, and M. Liuzzo (2008), Variation of H2O/CO2 and CO2/SO2 ratios of volcanic gases discharged by continuous degassing of Mount Etna volcano, Italy, J. Geophys. Res., 113, B09203, doi:10.1029/2007JB005185.Shinohara, H., N. Matsushima, K. Kazahaya, and M. Ohwada (2011), Magma‐hydrothermal system interaction inferred from volcanic gas measurements obtained during 2003–2008 at Meakandake volcano, Hokkaido, Japan, Bull. Volcanol., 73, 409–421, doi:10.1007/s00445-011-0463-2. Spilliaert, N., P. Allard, N. Metrich, and A. V. Sobolev (2006), Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile‐rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy), J. Geophys. Res., 111, B04203, doi:10.1029/ 2005JB003934. Stull, D. R., E. F. Westrum, and G. C. Sinke (1969), The Chemical Thermodynamics of Organic Compounds, John Wiley, New York. Wardell, L. J., P. R. Kyle, and C. Chaffin (2004), Carbon dioxide and carbon monoxide emission rates from an alkaline intra‐plate volcano: Mt. Erebus, Antarctica, J. Volcanol. Geotherm. Res., 131, 109–121, doi:10.1016/ S0377-0273(03)00320-2. Warneck, P. (1988), Chemistry of the Natural Atmosphere, Academic, San Diego, Calif.en
dc.description.obiettivoSpecifico1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attiveen
dc.description.obiettivoSpecifico2.4. TTC - Laboratori di geochimica dei fluidien
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorAiuppa, A.en
dc.contributor.authorShinohara, H.en
dc.contributor.authorTamburello, G.en
dc.contributor.authorGiudice, G.en
dc.contributor.authorLiuzzo, M.en
dc.contributor.authorMoretti, R.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentGeological Survey of Japan, AIST, Tsukuba, Japan.en
dc.contributor.departmentDipartimento DiSTeM, Università di Palermo, Palermo, Italy.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italiaen
dc.contributor.departmentCentro Interdipartimentale di Ricerche in Ingegneria Ambientale, Seconda Università di Napoli, Naples, Italy.en
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptGeological Survey of Japan, AIST - Tsukuba, Japan-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia-
crisitem.author.deptCentro Interdipartimentale di Ricerche in Ingegneria Ambientale, Seconda Università di Napoli, Naples, Italy.-
crisitem.author.orcid0000-0002-0254-6539-
crisitem.author.orcid0000-0001-7770-5226-
crisitem.author.orcid0000-0002-9410-4139-
crisitem.author.orcid0000-0002-3099-7505-
crisitem.author.orcid0000-0003-2031-5192-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent01. Atmosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Aiuppa et al JGR_2011.pdfMain article541.65 kBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

42
checked on Feb 10, 2021

Page view(s) 50

198
checked on Apr 24, 2024

Download(s)

35
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric