Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7169
DC FieldValueLanguage
dc.contributor.authorallRoberts, A. P.; National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UKen
dc.contributor.authorallFlorindo, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallVilla, G.; Dipartimento Scienze della Terra, Università di Parma, Viale Usberti 157A, 43100 Parma, Italyen
dc.contributor.authorallChang, L.; National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UKen
dc.contributor.authorallJovane, L.; National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UKen
dc.contributor.authorallBohaty, S. M.; National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UKen
dc.contributor.authorallLarrasoaña, J. C.; Área de Cambio Global, IGME, Oficina de Proyectos de Zaragoza, Manuel Lasala 44 9B, Zaragoza 50006, Spainen
dc.contributor.authorallHeslop, D.; Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australiaen
dc.contributor.authorallFitz Gerald, J. D.; Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australiaen
dc.date.accessioned2011-10-28T05:33:45Zen
dc.date.available2011-10-28T05:33:45Zen
dc.date.issued2011-10-15en
dc.identifier.urihttp://hdl.handle.net/2122/7169en
dc.description.abstractMagnetotactic bacteria intracellularly biomineralize magnetite of an ideal grain size for recording palaeomagnetic signals. However, bacterial magnetite has only been reported in a few pre-Quaternary records because progressive burial into anoxic diagenetic environments causes its dissolution. Deep-sea carbonate sequences provide optimal environments for preserving bacterial magnetite due to low rates of organic carbon burial and expanded pore-water redox zonations. Such sequences often do not become anoxic for tens to hundreds of metres below the seafloor. Nevertheless, the biogeochemical factors that control magnetotactic bacterial populations in such settings are not well known. We document the preservation of bacterial magnetite, which dominates the palaeomagnetic signal throughout Eocene pelagic carbonates from the southern Kerguelen Plateau, Southern Ocean. We provide evidence that iron fertilization, associated with increased aeolian dust flux, resulted in surface water eutrophication in the late Eocene that controlled bacterial magnetite abundance via export of organic carbon to the seafloor. Increased flux of aeolian ironbearing phases also delivered iron to the seafloor, some of which became bioavailable through iron reduction. Our results suggest that magnetotactic bacterial populations in pelagic settings depend crucially on particulate iron and organic carbon delivery to the seafloor.en
dc.language.isoEnglishen
dc.publisher.nameElsevier B.V.en
dc.relation.ispartofEarth and Planetary Science Lettersen
dc.relation.ispartofseries3-4/310 (2011)en
dc.subjectMagnetotactic bacteriaen
dc.subjectMagnetofossilsen
dc.subjectMagnetiteen
dc.subjectProductivityen
dc.subjectIronen
dc.subjectOrganic carbonen
dc.titleMagnetotactic bacterial abundance in pelagic marine environments is limited by organic carbon flux and availability of dissolved ironen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber441-452en
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetismen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetismen
dc.subject.INGV04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetismen
dc.identifier.doi10.1016/j.epsl.2011.08.011en
dc.relation.referencesAbrajevitch, A., Kodama, K., 2009. Biochemical vs. detrital mechanism of remanence acquisition in marine carbonates: a lesson from the K-T boundary interval. Earth Planet. Sci. Lett. 286, 269–277. Bailey, I., Liu, Q.S., Swann, G.E.A., Jiang, Z.X., Sun, Y.B., Zhao, X., Roberts, A.P., 2011. Iron fertilisation and biogeochemical cycles in the sub-Arctic northwest Pacific during the late Pliocene intensification of northern hemisphere glaciation. Earth Planet. Sci. Lett. 307, 253–265. Bazylinski, D.A., Frankel, R.B., 2004. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2, 217–230. Bazylinski, D.A., Heywood, B.R., Mann, S., Frankel, R.B., 1993. Fe3O4 and Fe3S4 in a bacterium. Nature 366, 218. Bazylinski, D.A., Frankel, R.B., Konhauser, K.O., 2007. Modes of biomineralization of magnetite by microbes. Geomicrobiol. J. 24, 465–475. Blain, S., et al., 2001. A biogeochemical study of the island mass effect in the context of the iron hypothesis: Kerguelen Islands, Southern Ocean. Deep-Sea Res. I 48, 163–187. Blain, S., et al., 2007. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature 446, 1070–1074. Blakemore, R.P., Maratea, D., Wolfe, R.S., 1979. Isolation and pure culture of a freshwater magnetic spirillum in chemically defined media. J. Bacteriol. 140, 720–729. Blakemore, R.P., Short, K.A., Bazylinski, D.A., Rosenblatt, C., Frankel, R.B., 1985. Microaerobic conditions are required for magnetite formation within Aquaspirillum magnetotacticum. Geomicrobiol. J. 4, 53–71. Bonnet, S., Guieu, C., 2004. Dissolution of atmospheric iron in seawater. Geophys. Res. Lett. 31, L03303. doi:10.1029/2003GL018423. Boughriet, A., Ouddane, B., Wartel, M., 1992. Electron spin resonance investigations of Mn compounds and free radicals in particles from the Seine River and its estuary. Mar. Chem. 37, 149–169. Boyd, P.W., Ellwood, M.J., 2010. The biogeochemical cycle of iron in the ocean. Nat. Geosci. 3, 675–682. Boyd, P.W., et al., 2004. The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature 428, 549–553. Buesseler, K.O., Andrews, J.E., Pike, S.M., Charette, M.A., 2004. The effects of iron fertilization on carbon sequestration in the Southern Ocean. Science 304, 414–417. Chambers, S.R., Cranston, R.E., 1991. Interstitial-water geochemistry of Kerguelen Plateau sediments. Proc. ODP Sci. Res. 119, 347–374. Channell, J.E.T., Hawthorne, T., 1990. Progressive dissolution of titanomagnetites at ODP Site 653 (Tyrrhenian Sea). Earth Planet. Sci. Lett. 96, 469–480. Channell, J.E.T., Galeotti, S., Martin, E.E., Billups, K., Scher, H.D., Stoner, J.S., 2003. Eocene to Miocene magnetostratigraphy, biostratigraphy, and chemostratigraphy at ODP Site 1090 (sub-Antarctic South Atlantic). Geol. Soc. Am. Bull. 115, 607–623. Charilaou, M., Winklhofer, M., Gehring, A.U., 2011. Simulation of ferromagnetic resonance spectra of linear chains of magnetite nanocrystals. J. Appl. Phys. 109, 093903. doi:10.1063/1.3581103. Day, R., Fuller, M., Schmidt, V.A., 1977. Hysteresis properties of titanomagnetites: grain size and composition dependence. Phys. Earth Planet. Inter. 13, 260–266. de Boor, C., 1994. A Practical Guide to Splines (Applied Mathematical Sciences). Springer. Dinarès-Turell, J., Hoogakker, B.A.A., Roberts, A.P., Rohling, E.J., Sagnotti, L., 2003. Quaternary climatic control of biogenic magnetite production and eolian dust input in cores from the Mediterranean Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 190, 195–209. Dunlop, D.J., 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res. 107 (B3), 2056. doi:10.1029/2001JB000486. Dunlop, D.J., Özdemir, Ö., 1997. Rock Magnetism, Fundamentals and Frontiers. Cambridge University Press, Cambridge. Egli, R., 2004a. Characterization of individual rock magnetic components by analysis of remanence curves, 1. Unmixing natural sediments. Stud. Geophys. Geod. 48, 391–446. Egli, R., 2004b. Characterization of individual rock magnetic components by analysis of remanence curves, 2. Fundamental properties of coercivity distributions. Phys. Chem. Earth 29, 851–867. Egli, R., Chen, A.P., Winklhofer, M., Kodama, K.P., Horng, C.S., 2010. Detection of noninteracting single domain particles using first-order reversal curve diagrams. Geochem. Geophys. Geosyst. 11, Q01Z11. doi:10.1029/2009GC002916. Ehrmann, W.U., Mackensen, A., 1992. Sedimentological evidence for the formation of an East Antarctic ice sheet in Eocene/Oligocene time. Palaeogeogr. Palaeoclimatol. Palaeoecol. 93, 85–112. Eldholm, O., Coffin, M.F., 2000. Large igneous provinces and plate tectonics. In: Richards, M., Gordon, A.R.G., van der Hilst, R.D. (Eds.), The History and Dynamics of Global Plate Motions. American Geophysical Union, Washington, D.C, pp. 309–326. Faivre, D., Schüler, D., 2008. Magnetotactic bacteria and magnetosomes. Chem. Rev. 108, 4875–4898. Faul, K.L., Delaney, M.L., 2010. A comparison of early Paleogene export productivity and organic carbon burial flux for Maud Rise, Weddell Sea, and Kerguelen Plateau, south Indian Ocean. Paleoceanography 25, PA3214. doi:10.1029/2009PA001916. Fischer, H., Mastrogiacomo, G., Löffler, J.F., Warthmann, R.J., Weidler, P.G., Gehring, A.U., 2008. Ferromagnetic resonance and magnetic characteristics of intact magnetosome chains in Magnetospirillum gryphiswaldense. Earth Planet. Sci. Lett. 270, 200–208. Flies, C.B., Jonkers, H.M., de Beer, D., Bosselmann, K., Böttcher, M.E., Schüler, D., 2005. Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in freshwater microcosms. FEMS Microbiol. Ecol. 52, 185–195. Florindo, F., Roberts, A.P., 2005. Eocene-Oligocene magnetobiostratigraphy of ODP sites 689 and 690, Maud Rise, Weddell Sea, Antarctica. Geol. Soc. Am. Bull. 117, 46–66. Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., Maynard, V., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43, 1075–1090. Heslop, D., Dekkers, M.J., Kruiver, P.P., van Oorschot, I.H.M., 2002. Analysis of isothermal remanent magnetisation acquisition curves using the expectation–maximisation algorithm. Geophys. J. Int. 148, 58–64. Hesse, P.P., 1994. Evidence for bacterial palaeoecological origin of mineral magnetic cycles in oxic and sub-oxic Tasman Sea sediments. Mar. Geol. 117, 1–17. Housen, B.A., Moskowitz, B.M., 2006. Depth distribution of magnetofossils in nearsurface sediments from the Blake/Bahama Outer Ridge, western North Atlantic Ocean, determined by low-temperature magnetism. J. Geophys. Res. 111, G01005. doi:10.1029/2005JG000068. Jickells, T.D., An, Z.S., Anderson, K.K., Baker, A.R., Bergametti, G., Brooks, N., Cao, J.J., Boyd, P.W., Duce, R.A., Hunter, K.A., Kawahata, H., Kubilay, N., laRoche, J., Liss, P.S., Mahowald, N., Prospero, J.M., Ridgwell, A.J., Tegen, I., Torres, R., 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71. Jovane, L., Florindo, F., Dinarès-Turell, J., 2004. Environmental magnetic record of paleoclimate change from the Eocene-Oligocene stratotype section, Massignano, Italy. Geophys. Res. Lett. 31, L15601. doi:10.1029/2004GL020554. Jovane, L., Florindo, F., Coccioni, R., Dinarès-Turell, J., Marsili, A., Monechi, S., Roberts, A.P., Sprovieri,M., 2007. Themiddle Eocene climatic optimum (MECO) event in the Contessa Highway section, Umbrian Apennines. Italy. Geol. Soc. Am. Bull. 119, 423–427. Karlin, R., 1990a. Magnetite diagenesis in marine sediments from the Oregon continental margin. J. Geophys. Res. 95, 4405–4419. Karlin, R., 1990b. Magnetic mineral diagenesis in suboxic sediments at Bettis site W-N, NE Pacific Ocean. J. Geophys. Res. 95, 4421–4436. Karlin, R., Levi, S., 1983. Diagenesis of magnetic minerals in Recent haemipelagic sediments. Nature 303, 327–330. Kirschvink, J.L., 1982. Paleomagnetic evidence for fossil biogenic magnetite in Western Crete. Earth Planet. Sci. Lett. 59, 388–392. Kopp, R.E., Kirschvink, J.L., 2008. The identification and biogeochemical interpretation of fossil magnetotactic bacteria. Earth-Sci. Rev. 86, 42–61. Kopp, R.E., Weiss, B.P., Maloof, A.C., Vali, H., Nash, C.Z., Kirschvink, J.L., 2006. Chains, clumps, and strings: magnetofossil taphonomy with ferromagnetic resonance spectroscopy. Earth Planet. Sci. Lett. 247, 10–25. Larrasoaña, J.C., Roberts, A.P., Stoner, J.S., Richter, C., Wehausen, R., 2003. A new proxy for bottom-water ventilation based on diagenetically controlled magnetic properties of eastern Mediterranean sapropel-bearing sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 190, 221–242. Lawver, L.A., Gahagan, L.M., 2003. Evolution of Cenozoic gateways in the circum- Antarctic region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 198, 11–37. Lean, C.M.B., McCave, I.N., 1998. Glacial to interglacialmineralmagnetic and palaeoceanographic changes at Chatham Rise, SW Pacific Ocean. Earth Planet. Sci. Lett. 163, 247–260. Martin, J.H., Gordon, R.M., Fitzwater, S.E., 1991. The case for iron. Limnol. Oceanogr. 36, 1793–1802. Morel, F.M.M., Price, N.M., 2003. The biogeochemical cycles of trace metals in the oceans. Science 300, 944–947. Otamendi, A.M., Díaz, M., Costanzo-Álvarez, V., Aldana, M., Pilloud, A., 2006. EPR stratigraphy applied to the study of two marine sedimentary sections in southwestern Venezuela. Phys. Earth Planet. Inter. 154, 243–254. Persico, D., Villa, G., 2004. Eocene-Oligocene calcareous nannofossils from Maud Rise and Kerguelen Plateau (Antarctica): paleoecological and paleoceanographic implications. Mar. Micropal. 52, 153–179. Persico, D., Fioroni, C., Villa, G., 2011. A refined calcareous nannofossil biostratigraphy for the Middle Eocene-Early Oligocene Southern Ocean ODP sites. Palaeogeogr. Palaeoclimatol. Palaeoecol.. doi:10.1016/j.paleo.2011.05.017 Petermann, H., Bleil, U., 1993. Detection of live magnetotactic bacteria in South Atlantic deep-sea sediments. Earth Planet. Sci. Lett. 117, 223–228. Petersen, N., von Dobeneck, T., Vali, H., 1986. Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean. Nature 320, 611–614. Pike, C.R., Roberts, A.P., Verosub, K.L., 1999. Characterizing interactions in fine magnetic particle systems using first order reversal curves. J. Appl. Phys. 85, 6660–6667. Pollard, R.T., et al., 2007. Southern Ocean deep-water carbon export enhanced by natural iron fertilization. Nature 457, 577–580. Poulton, S.W., Krom, M.D., Raiswell, R., 2004. A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochim. Cosmochim. Acta 68, 3703–3715. Roberts, A.P., Pike, C.R., Verosub, K.L., 2000. FORC diagrams: a new tool for characterizing the magnetic properties of natural samples. J. Geophys. Res. 105, 28461–28475. Roberts, A.P., Bicknell, S., Byatt, J., Bohaty, S.M., Florindo, F., Harwood, D.M., 2003. Magnetostratigraphic calibration of Southern Ocean diatom biostratigraphic datums from the Eocene-Oligocene of Kerguelen Plateau (ODP sites 744 and 748). Palaeogeogr. Palaeoclimatol. Palaeoecol. 198, 145–168. Robertson, D.J., France, D.E., 1994. Discrimination of remanence-carrying minerals in mixtures, using isothermal remanent magnetisation acquisition curves. Phys. Earth Planet. Inter. 84, 223–234. Rowan, C.J., Roberts, A.P., Broadbent, T., 2009. Paleomagnetic smoothing and magnetic enhancement in marine sediments due to prolonged early diagenetic growth of greigite. Earth Planet. Sci. Lett. 277, 223–235. Schüler, D., Baeuerlein, E., 1996. Iron-limited growth and kinetics of iron uptake in Magnetospirillum gryphiswaldense. Arch. Microbiol. 166, 301–307. Schüler, D., Baeuerlein, E., 1998. Dynamics of iron uptake and Fe3O4 biomineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense. J. Bacteriol. 180, 159–162. Stoltz, J.F., Chang, S.B.R., Kirschvink, J.L., 1986. Magnetotactic bacteria and singledomain magnetite in hemipelagic sediments. Nature 321, 849–851. Tarduno, J.A., 1992. Magnetic susceptibility cyclicity and magnetic dissolution in Cretaceous limestones of the Southern Alps (Italy). Geophys. Res. Lett. 19, 1515–1518. Tarduno, J.A., 1994. Temporal trends of magnetic dissolution in the pelagic realm: gauging paleoproductivity? Earth Planet. Sci. Lett. 123, 39–48. Tarduno, J.A., Wilkison, S., 1996. Non-steady state magnetic mineral reduction, chemical lock-in, and delayed remanence acquisition in pelagic sediments. Earth Planet. Sci. Lett. 144, 315–326. Tarduno, J.A., Tian, W., Wilkison, S., 1998. Biogeochemical remanent magnetization in pelagic sediments of the western equatorial Pacific Ocean. Geophys. Res. Lett. 25, 3987–3990. Tauxe, L., Hartl, P., 1997. 11 million years of Oligocene geomagnetic field behaviour. Geophys. J. Int. 128, 217–229. Vali, H., Förster, O., Amarantidis, G., Petersen, N., 1987. Magnetotactic bacteria and their magnetofossils in sediments. Earth Planet. Sci. Lett. 86, 389–400. Villa, G., Fioroni, C., Pea, L., Bohaty, S., Persico, D., 2008. Middle Eocene-Late Oligocene climate variability: calcareous nannofossil response at Kerguelen Plateau, Site 748. Mar. Micropal. 69, 173–192. Weiss, B.P., Kim, S.S., Kirschvink, J.L., Kopp, R.E., Sankaran, M., Kobayashi, A., Komeili, A., 2004. Ferromagnetic resonance and low temperature magnetic tests for biogenic magnetite. Earth Planet. Sci. Lett. 224, 73–89. Yamazaki, T., 2009. Environmental magnetism of Pleistocene sediments in the North Pacific and Ontong-Java Plateau: temporal variations of detrital and biogenic components. Geochem. Geophys. Geosyst. 10, Q07Z04. doi:10.1029/2009GC002413. Yamazaki, T., Kawahata, H., 1998. Organic carbon flux controls the morphology of magnetofossils in sediments. Geology 26, 1064–1066. Yamazaki, T., Sølheid, P., 2011. Maghemite-to-magnetite reduction across the Fe-redox boundary in a sediment core from the Ontong-Java Plateau: influence on relative palaeointensity estimation and environmental magnetic application. Geophys. J. Int. 185, 1243–1254.en
dc.description.obiettivoSpecifico1.8. Osservazioni di geofisica ambientaleen
dc.description.obiettivoSpecifico2.2. Laboratorio di paleomagnetismoen
dc.description.journalTypeJCR Journalen
dc.description.fulltextrestricteden
dc.contributor.authorRoberts, A. P.en
dc.contributor.authorFlorindo, F.en
dc.contributor.authorVilla, G.en
dc.contributor.authorChang, L.en
dc.contributor.authorJovane, L.en
dc.contributor.authorBohaty, S. M.en
dc.contributor.authorLarrasoaña, J. C.en
dc.contributor.authorHeslop, D.en
dc.contributor.authorFitz Gerald, J. D.en
dc.contributor.departmentNational Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UKen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentDipartimento Scienze della Terra, Università di Parma, Viale Usberti 157A, 43100 Parma, Italyen
dc.contributor.departmentNational Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UKen
dc.contributor.departmentNational Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UKen
dc.contributor.departmentNational Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UKen
dc.contributor.departmentÁrea de Cambio Global, IGME, Oficina de Proyectos de Zaragoza, Manuel Lasala 44 9B, Zaragoza 50006, Spainen
dc.contributor.departmentResearch School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australiaen
dc.contributor.departmentResearch School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptNational Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, UK-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italia-
crisitem.author.deptDepartimento di Scienze della Terra, Universita di Parma, Parco Aeres delle Scienze, 157 Parma, Italy-
crisitem.author.deptNational Oceanography Centre, Southampton, University of Southampton, Southampton, UK-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptNational Oceanography Centre, University of Southampton, Southampton, UK.-
crisitem.author.deptInstituto Geológico y Minero de España, Unidad de Zaragoza, E-50006, Zaragoza, Spain-
crisitem.author.deptResearch School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia-
crisitem.author.deptResearch School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia-
crisitem.author.orcid0000-0002-6058-9748-
crisitem.author.orcid0000-0001-8245-0555-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Roberts_et_al.pdfMain article2.23 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

110
checked on Feb 7, 2021

Page view(s) 50

196
checked on Apr 13, 2024

Download(s)

27
checked on Apr 13, 2024

Google ScholarTM

Check

Altmetric