Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7168
DC FieldValueLanguage
dc.contributor.authorallMazzini, A.; Physics of Geological Processes, University of Oslo, Sem Sælandsvei 24, Box 1048, 0316 Oslo, Norwayen
dc.contributor.authorallSvensen, H.; Physics of Geological Processes, University of Oslo, Sem Sælandsvei 24, Box 1048, 0316 Oslo, Norwayen
dc.contributor.authorallEtiope, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.authorallOnderdonk, N.; Department of Geological Sciences, California State University, Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USAen
dc.contributor.authorallBanks, D.; School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UKen
dc.date.accessioned2011-10-24T12:54:13Zen
dc.date.available2011-10-24T12:54:13Zen
dc.date.issued2011-08-15en
dc.identifier.urihttp://hdl.handle.net/2122/7168en
dc.description.abstractThe Salton Sea Geothermal System (California) is an easily accessible setting for investigating the interactions of biotic and abiogenic geochemical processes in sediment-hosted hydrothermal systems. We present new temperature data and the molecular and isotopic composition of fluids seeping at the Davis-Schrimpf seep field during 2003–2008. Additionally, we show the first flux data for CO2 and CH4 released throughout the field from focused vents and diffuse soil degassing. The emitted gases are dominated by CO2 (~98%) and CH4 (~1.5%). By combining δ13CCO2 (as low as −5.4‰) and δ13CCH4 (−32‰to−17.6‰) with 3He/4He (R/RaN6) and δDCH4 values (−216‰to−150‰), we suggest, in contrast to previous studies, that CO2 may have a significant Sub-Continental Mantle source, with minimal crustal contamination, and CH4 seems to be a mixture of high temperature pyrolitic (thermogenic) and abiogenic gas. Water seeps show that δD and δ18O increase proportionally with salinity (Total Dissolved Solids in g/L) ranging from 1–3 g/L (gryphons) to 145 g/L (hypersaline pools). In agreement with elemental analyses, the isotopic composition of the waters indicate a meteoric origin, modified by surface evaporation, with little or no evidence of deep fossil or magmatic components. Very high Cl/Br (N3,000) measured at many seeping waters suggests that increased salinities result from dissolution of halite crusts near the seep sites. Gas flux measurements from 91 vents (pools and gryphons) give a conservative estimate of ~2,100 kg of CO2 and 11.5 kg of CH4 emitted per day. In addition soil degassing measured at 81 stations (20x20 m grid over 51,000 m2) revealed that 7,310 kg/d CO2 and 33 kg/d CH4 are pervasively released to the atmosphere. These results emphasise that diffuse gas emission from soil can be dominant (~75%) even in hydrothermal systems with large and vigorous gas venting. Sediment-hosted hydrothermal systems may represent an intermediate class of geologic methane sources for the atmosphere, with emission factors lower than those of sedimentary seepage in petroleum basins but higher than those of traditional geothermal-volcanic systems; on a global scale they may significantly contribute to the atmospheric methane budget.en
dc.language.isoEnglishen
dc.publisher.nameElsevieren
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen
dc.relation.ispartofseries3-4/205 (2011)en
dc.subjectSalton Sea Geothermal Systemen
dc.subjecthydrothermal seepsen
dc.subjectgas and water geochemistryen
dc.subjectflux measurementsen
dc.subjectmantleen
dc.titleFluid origin, gas fluxes and plumbing system in the sediment-hosted Salton Sea Geothermal System (California, USA)en
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber67-83en
dc.subject.INGV03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gasesen
dc.subject.INGV04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistryen
dc.identifier.doi10.1016/j.jvolgeores.2011.05.008en
dc.relation.referencesAbrajano, T.A., Sturchio, N.C., Bohlke, J.K., Lyon, G.L., Poreda, R.J., Stevens, C.M., 1988. Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: Deep or shallow origin? Chemical Geology 71 (1–3), 211–222. Boyle, K.L., Hutchings, L.J., Bonner, B.P., Foxall, W., Kasameyer, P.W., 2007. Double Difference Earthquake Locations at the Salton Sea Geothermal Reservoir. Geothermal Resources Council, September 2007(LLNL, UCRL-TR-233538). Canet, C., Prol-Ledesma, R.M., Dando, P.R., Vázquez-Figueroa, V., Shumilin, E., Birosta, E., Sánchez, A., Robinson, C.J., Camprubí, A., Tauler, E., 2010. Discovery of massive seafloor gas seepage along the Wagner Fault, northern Gulf of California. Sedimentary Geology 228 (3–4), 292–303. Chacko, T., Mayeda, T.K., Clayton, R.N., Goldsmith, J.R., 1991. Oxygen and Carbon Isotope Fractionations between Co2 and Calcite. Geochimica et Cosmochimica Acta 55 (10), 2867–2882. Chiodini, G., Allard, P., Caliro, S., Parello, F., 2000. 18O exchange between steam and carbon dioxide in volcanic and hydrothermal gases: implications for the source of water. Geochimica et Cosmochimica Acta 64 (14), 2479–2488. Cho, M., Liou, J.G., Bird, D.K., 1988. Prograde Phase-Relations in the State 2–14 Well Metasandstones, Salton-Sea Geothermal-Field, California. Journal of Geophysical Research-Solid Earth and Planets 93 (B11), 13081–13103. Clayton, R.N., Muffler, J.L.P., 1968. Oxygen isotope study of calcite and silicates of the River Ranch No. 1 well Salton Sea geotehrmal field, California. American Journal of Science 266, 968–979. Coleman, D.D., Risatti, J.B., Schoell, M., 1981. Fractionation of carbon and hydrogen isotopes by methane oxidising bacteria. Geochimica et Cosmochimica Acta 45, 1033–1037. Craig, H., 1957. Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analyses of carbon dioxide. Geochimica et Cosmochimica Acta 12, 133–149. D'Alessandro, W., Bellomo, S., Brusca, L., Fiebig, J., Longo, M., Martelli, M., Pecoraino, G., Salerno, F., 2009. Hydrothermal methane fluxes from the soil at Pantelleria island (Italy). Journal of Volcanology and Geothermal Research 187 (3–4), 147–157. Dodson, A., DePaolo, D.J., Kennedy, B.M., 1998. Helium isotopes in lithospheric mantle: Evidence from Tertiary basalts of the western USA. Geochimica et Cosmochimica Acta 62 (23–24), 3775–3787. Elders, W.A., Sass, J.H., 1988. The Salton-Sea-Scientific-Drilling-Project. Journal of Geophysical Research-Solid Earth and Planets 93 (B11), 12953–12968. Elders, W.A., Biehler, S., Rex, R.W., Robinson, P.T., Meidav, T., 1972. Crustal Spreading in Southern-California. Science 178 (4056), 15–24. Etiope, G., Fridriksson, T., Italiano, F., Winwarter, W., Theloke, J., 2007a. Natural emissions of methane from geothermal and volcanic sources in Europe. Journal of Volcanology and Geothermal Research 165 (1–2), 76–86. Etiope, G., Martinelli, G., Caracausi, A., Italiano, F., 2007b. Methane seeps and mud volcanoes in Italy: gas origin, fractionation and emission to the atmosphere. Geophysical Research Letters 34, L14303. doi:10.1029/2007GL030341. Etiope, G., Zwahlen, C., Anselmetti, F.S., Kupfer, R., Schubert, C.J., 2010. Origin and flux of a gas seep in the Northern Alps (Giswil, Switzerland). Geofluids 10, 476–485. Etiope, G., Nakada, R., Tanaka, K., Yoshida, N., 2011. Gas seepage from Tokamachi mud volcanoes, onshore Niigata Basin (Japan): origin, post-genetic alterations and CH4- CO2 fluxes. Applied Geochemistry 26, 348–359. Fiebig, J., Woodland, A.B., Spangenberg, J., Oschmann, W., 2007. Natural evidence for rapid abiogenic hydrothermal generation of CH4. Geochimica et Cosmochimica Acta 71 (12), 3028–3039. Fontes, J.C., Matray, J.M., 1993. Geochemistry and Origin of Formation Brines from the Paris Basin, France. 1. Brines Associated with Triassic Salts. Chemical Geology 109 (1–4), 149–175. Fuis, G.S., Mooney, W.D., Healey, J.H., McMechan, G.A., W.J., L., 1982. Crustal structure of the Imperial Valley. U.S. Geol. Survey. Prof. Paper, 1254, pp. 25–49. Gautheron, C., Moreira, M., 2002. Helium signature of the subcontinental lithospheric mantle. Earth and Planetary Science Letters 199 (1–2), 39–47. Haaland, H.J., Furnes, H., Martinsen, O.J., 2000. Paleogene tuffaceous intervals, Grane Field (Block 25/11), Norwegian North Sea: their depositional, petrographical, geochemical character and regional implications. Marine and Petroleum Geology 17 (1), 101–118. Hahm, D., Hilton, D.R., Cho, M., Wei, H., Kim, K.R., 2008. Geothermal He and CO2 variations at Changbaishan intra-plate volcano (NE China) and the nature of the sub-continental lithospheric mantle. Geophysical Research Letters 35 (22). Helgeson, H.C., 1968. Geologic and Thermodynamic Characteristics of Salton Sea Geothermal System. American Journal of Science 266 (3), 129–166. Herzig, C.T.,Mehegan, J.M., Stelting, C.E., 1988. Lithostratigraphy of the State 2–14 Borehole - Salton-Sea-Scientific-Drilling-Project. Journal of Geophysical Research-Solid Earth and Planets 93 (11), 12969–12980. Hilton, D.R., 1996. The helium and carbon isotope systematics of a continental geothermal system: Results from monitoring studies at Long Valley caldera (California, USA). Chemical Geology 127 (4), 269–295. Hosgormez, H., Etiope, G., Yalcin, M.N., 2008. New evidence for a mixed inorganic and organic origin of the Olympic Chimaera fire (Turkey): a large onshore seepage of abiogenic gas. Geofluids 8 (4), 263–273. Hulen, J.B., Kaspereit, D., Norton, D.L., Osborn, W., Pulka, F.S., 2002. Refined conceptual modeling and a new resource estimate for the Salton Sea geothermal field, Imperial Valley, California. Geotherm. Resources Coun. Trans., 26, pp. 29–36. Jamtveit, B., Svensen, H., Podladchikov, Y., Planke, S., 2004. Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. Geological Society, London, Special Publications 234, 233–241. Jenden, P.D., Hilton, D.R., Kaplan, I.R., Craig, H., 1993. Abiogenic hydrocarbons and mantle helium in oil and gas fields. In: Howell, D.G. (Ed.), The Future of Energy Gases. (US Geological Survey Professional Paper 1570). United States Government Printing Office,Washington, pp. 31–56. Kampf, H., Geissler, W.H., Brauer, K., 2007. Combined gas-geochemical and receiver function studies of the Vogtland/NW Bohemia intraplate mantle degassing field, Central Europe. In: Ritter, J.R.R., Christensen, U.R. (Eds.), Mantle plumes. A Multidisciplinary Approach. Springer-Verlag, Berlin Heidelberg, pp. 127–158. Kerrick, D.M., McKibben, M.A., Seward, T.M., Caldeira, K., 1995. Convective hydrothermal CO 2 emission from high heat flow regions. Chemical Geology 121, 285–293. Koch, U., Heinicke, J., 2007. Hydrological influences on long-term gas flow trends at locations in the Vogtland/NW Bohemian seismic region (German-Czech border). Annals of Geophysics 50 (4), 557–568. Kyser, T.K., 1986. Stable Isotope Variations in the Mantle. In: Valley, J.M., Taylor, H.P.J., O'Neil, J.R. (Eds.), Stable Isotopes in High Temperature Geological Pocesses: Reviews in Mineralogy, pp. 141–164. Lachenbruch, A.H., Sass, J.H., Galanis, S.P., 1985. Heat-Flowin Southernmost California and the Origin of the Salton Trough. Journal of Geophysical Research-Solid Earth and Planets 90 (Nb8), 6709–6736. Lupton, J.E., 1983. Terrestrial Inert-Gases - Isotope Tracer Studies and Clues to Primordial Components in the Mantle. Annual Review of Earth and Planetary Sciences 11, 371–414. Lynch, D.K., Hudnut, K.W., 2008. The Wister mud pot lineament: South eastward extension or abandoned strand of the San Andreas fault? Seismic Society American Bulletin 98 (4), 1720–1729. Mazzini, A., Svensen, H., Planke, S., Guliyev, I., Akhmanov, G.G., Fallik, T., Banks, D., 2009. When mud volcanoes sleep: Insight from seep geochemistry at the Dashgil mud volcano, Azerbaijan. Marine and Petroleum Geology 26 (9), 1704–1715. Mccaffrey, M.A., Lazar, B., Holland, H.D., 1987. The Evaporation Path of Seawater and the Coprecipitation of Br- and K+with Halite. Journal of Sedimentary Petrology 57 (5), 928–937. Mckibben, M.A., Williams, A.E., Elders, W.A., Eldridge, C.S., 1987. Saline brines and metallogenesis in a modern sediment-filled rift: the Salton Sea geothermal system, California, U.S.A. Applied Geochemistry 2, 563–578. Motyka, R.J., Poreda, R.J., Jeffrey, A.W.A., 1989. Geochemistry, Isotopic Composition, and Origin of Fluids Emanating from Mud Volcanos in the Copper River Basin, Alaska. Geochimica et Cosmochimica Acta 53 (1), 29–41. Muffler, J.L.P., White, D.E., 1968. Origin of CO2 in the Salton Sea Geothermal System, Southeastern California, U.S.A. XXIII International Geological Congress, pp. 185–194. Muffler, L.J.P., White, D.E., 1969. Acitve Metamorphism of Upper Cenozoic Sediments in Salton Sea Geothermal Field and Salton Trough Southeastern California. Geological Society of America Bulletin 80 (2), 157–182. Onderdonk, N., Mazzini, A., Shafer, L., Svensen, H., 2011. Controls on the geomorphic expression and evolution of gryphons, pools, and caldera features at hydrothermal seeps in the Salton Sea Geothermal Field, southern California. Geomorphology 130 (3–4), 327–342. Potter, J., Rankin, A.H., Treloar, P.J., 2004. Abiogenic Fischer-Tropsch synthesis of hydrocarbons in alkaline igneous rocks; fluid inclusion, textural and isotopic evidence from the Lovozero complex, N.W. Russia. Lithos 75 (3–4), 311–330. Proskurowski, G., Lilley,M.D., Seewald, J.S., Fruh-Green, G.L., Olson, E.J., Lupton, J.E., Sylva, S.P., Kelley, D.S., 2008. Abiogenic hydrocarbon production at Lost City hydrothermal field. Science 319 (5863), 604–607. Robinson, P.T., Elders, W.A., Muffler, L.J.P., 1976. Quaternary Volcanism in Salton Sea Geothermal Field, Imperial-Valley, California. Geological Society of America Bulletin 87 (3), 347–360. Sano, Y., Marty, B., 1995. Origin of Carbon in Fumarolic Gas from Island Arcs. Chemical Geology 119 (1–4), 265–274. Sass, J.H., Priest, S.S., Duda, L.E., Carson, C.C., Hendricks, J.D., Robison, L.C., 1988. Thermal Regime of the State 2–14 Well, Salton Sea Scientific Drilling Project. Journal of Geophysical Research 93 (B11), 12995–13004. Savin, S.M., Hsieh, J.C.C., 1998. The hydrogen and oxygen isotope geochemistry of pedogenic clay minerals: principles and theoretical background. Geoderma 82 (1–3), 227–253. Shaw, A.M., Hilton, D.R., Fischer, T.P., Walker, J.A., Alvarado, G.E., 2003. Contrasting He-C relationships in Nicaragua and Costa Rica: insights into C cycling through subduction zones. Earth and Planetary Science Letters 214 (3–4), 499–513. Shearer, C.K., Papike, J.J., Simon, S.B., Davis, B.L., Laul, J.C., 1988. Mineral Reactions in Altered Sediments from the California State 2–14 Well - Variations in the Modal Mineralogy, Mineral Chemistry and Bulk Composition of the Salton-Sea-Scientific- Drilling-Project Core. Journal of Geophysical Research-Solid Earth and Planets 93 (B11), 13104–13122. Sheppard, S.M.F., 1986. Characterization and Isotopic Variations in Natural-Waters. Reviews in Mineralogy 16, 165–183. Simoneit, B.R.T., 1985. Hydrothermal Petroleum- Genesis, Migration, and Deposition in Guaymas Basin, Gulf of California. Canadian Journal of Earth Sciences 22 (12), 1919–1929. Simoneit, B.R.T., 1988. Petroleum Generation in Submarine Hydrothermal Systems - an Update. The Canadian Mineralogist 26, 827–840. Simoneit, B.R.T., Galimov, E.M., 1984. Geochemistry of interstitial gases in Quaternary sediments of the Gulf of California. Chemical Geology 43 (1–2), 151–166. Spulber, L., Etiope, G., Baciu, C., Malos, C., Vlad, S.N., 2010. Methane emission from natural gas seeps and mud volcanoes in Transylvania (Romania). Geofluids 10, 463–475. Sturz, A.A., Kamps, R.L., Earley, P.J., 1992. Temporal changes in mud volcanoes, Salton Sea Geothermal Area. In: Kharaka, Y.K., Maest, A.S. (Eds.), Water-rock interaction. Balkema, Rotterdam, pp. 1363–1366. Svensen, H., Karlsen, D.A., Sturz, A., Backer-Owe, K., Banks, D., Planke, S., 2007. Processes controlling water and hydrocarbon composition in seeps from the Salton Sea geothermal system, California, USA. Geology 35 (1), 85–88. Svensen, H., Hammer, Ø., Mazzini, A., Onderdonk, N., Polteau, S., Planke, S., Podladchikov, Y.Y., 2009. Dynamics of hydrothermal seeps from the Salton Sea geothermal system (California, USA) constrained by temperature monitoring and time series analysis. Journal of Geophysical Research (Solid Earth) 114, B09201. doi:10.1029/2008JB006247. Taran, Y.A., Varley, N.R., Inguaggiato, S., Cienfuegos, E., 2010. Geochemistry of H2- and CH4-enriched hydrothermal fluids of Socorro Island, Revillagigedo Archipelago, Mexico. Evidence for serpentinization and abiogenic methane. Geofluids 10 (4), 542–555. Tedesco, D., Tassi, F., Vaselli, O., Poreda, R.J., Darrah, T., Cuoco, E., Yalire, M.M., 2010. Gas isotopic signatures (He, C, and Ar) in the Lake Kivu region (western branch of the East African rift system): Geodynamic and volcanological implications. Journal of Geophysical Research-Solid Earth 115. Towse, D.F., Palmer, T.D., 1975. Summary of geology at the ERDA-Magma-SDG&E geothermal test site. UCID-17008, Lawrence Livermore Natl. Lab, Livermore, California. Von Damm, K.L., Edmond, J.M., Measures, C.I., Grant, B., 1985. Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geochimica et Cosmochimica Acta 49 (11), 2221–2237. Welhan, J.A., 1988. Origins of methane in hydrothermal systems. Chemical Geology 71, 183–198. Welhan, J.A., Craig, H., 1983. Methane, hydrogen and helium in hydrothermal fluids at 21°N on the East Pacific Rise. In: Rona, P.A., Bostrom, K., Laubier, L., Smith, K.L. (Eds.), Hydrothermal Processes at Seafloor Spreading Centers. Plenum, New York, pp. 391–409. Welhan, J.A., Lupton, J.E., 1987. Light-Hydrocarbon Gases in Guaymas Basin Hydrothermal Fluids - Thermogenic Versus Abiogenic Origin. Aapg Bulletin-American Association of Petroleum Geologists 71 (2), 215–223. Werner, C., Hurwitz, S., Evans, W.C., Lowenstern, J.B., Bergfeld, D., Heasler, H., Jaworowski, C., Hunt, A., 2008. Volatile emissions and gas geochemistry of Hot Spring Basin, Yellowstone National Park, USA. Journal of Volcanology and Geothermal Research 178 (4), 751–762. Williams, A.E., 1997. Fluid density distribution in a high temperature, stratified thermohaline system: Implications for saline hydrothermal circulation. Earth and Planetary Science Letters 146 (1–2), 121–136. Williams, A.E., Mckibben, M.A., 1989. A Brine Interface in the Salton-Sea Geothermal System, California - Fluid Geochemical and Isotopic Characteristics. Geochimica et Cosmochimica Acta 53 (8), 1905–1920. Younker, L.W., Kasameyer, P.W., Tewhey, J.D., 1982. Geological, Geophysical, and Thermal-Characteristics of the Salton-Sea Geothermal-Field, California. Journal of Volcanology and Geothermal Research 12 (3–4), 221–258. Zarate-del Valle, P.F., Simoneit, B.R.T., 2005. Hydrothermal bitumen generated from sedimentary organic matter of rift lakes - Lake Chapala, Citala Rift, western Mexico. Applied Geochemistry 20 (12), 2343–2350. Zhu, Y.N., Shi, B.Q., Fang, C.B., 2000. The isotopic compositions ofmolecular nitrogen: implications on their origins in natural gas accumulations. Chemical Geology 164 (3–4), 321–330.en
dc.description.obiettivoSpecifico4.5. Studi sul degassamento naturale e sui gas petroliferien
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorMazzini, A.en
dc.contributor.authorSvensen, H.en
dc.contributor.authorEtiope, G.en
dc.contributor.authorOnderdonk, N.en
dc.contributor.authorBanks, D.en
dc.contributor.departmentPhysics of Geological Processes, University of Oslo, Sem Sælandsvei 24, Box 1048, 0316 Oslo, Norwayen
dc.contributor.departmentPhysics of Geological Processes, University of Oslo, Sem Sælandsvei 24, Box 1048, 0316 Oslo, Norwayen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italiaen
dc.contributor.departmentDepartment of Geological Sciences, California State University, Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USAen
dc.contributor.departmentSchool of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UKen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptCentre for Earth Evolution and Dynamics (CEED), University of Oslo, Norway,-
crisitem.author.deptPhysics of Geological Processes, University of Oslo, Sem Sælandsvei 24, Box 1048, 0316 Oslo, Norway-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia-
crisitem.author.deptDepartment of Geological Sciences, California State University, Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA-
crisitem.author.deptSchool of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK-
crisitem.author.orcid0000-0001-8614-4221-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent03. Hydrosphere-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Mazzini-etal2011-SaltonSea.pdf3.79 MBAdobe PDF
Show simple item record

WEB OF SCIENCETM
Citations 50

31
checked on Feb 7, 2021

Page view(s) 5

1,036
checked on Mar 27, 2024

Download(s)

32
checked on Mar 27, 2024

Google ScholarTM

Check

Altmetric