Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/7151
DC FieldValueLanguage
dc.contributor.authorallCamacho, A. G.; Instituto de Astronomía y Geodesia, CSIC‐UCM, Madrid, Spain.en
dc.contributor.authorallGonzález, P. J.; Department of Earth Sciences, University of Western Ontario, London, Ontario, Canadaen
dc.contributor.authorallFernández, J.; Instituto de Astronomía y Geodesia, CSIC‐UCM, Madrid, Spain.en
dc.contributor.authorallBerrino, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.date.accessioned2011-10-07T09:19:58Zen
dc.date.available2011-10-07T09:19:58Zen
dc.date.issued2011en
dc.identifier.urihttp://hdl.handle.net/2122/7151en
dc.description.abstractChanges in gravity and/or surface deformation are often associated with volcanic activity. Usually, bodies with simple geometry (e.g., point sources, prolate or oblate spheroids) are used to model these signals considering anomalous mass and/or pressure variations. We present a new method for the simultaneous, nonlinear inversion of gravity changes and surface deformation using bodies with a free geometry. Assuming simple homogenous elastic conditions, the method determines a general geometrical configuration of pressure and density sources. These sources are described as an aggregate of pressure and density point sources, fitting the whole data set (given some regularity conditions). The approach works in a growth step‐by‐step process that allows us to build very general geometrical configurations. The methodology is validated against an ellipsoidal body with anomalous pressure and a parallelepiped body with anomalous density, buried in an elastic medium. The simultaneous inversion of deformation and gravity values permits a good reconstruction of the assumed bodies. Finally, the inversion method is applied to the interpretation of gravity, leveling, and interferometric synthetic aperture radar (InSAR) data from the volcanic area of Campi Flegrei (Italy) for the period 1992–2000. For this period, a model with no significant mass change and an extended decreasing pressure region satisfactorily fits the data. The pressure source is located at about ∼1500 m depth, and it is interpreted as corresponding to the dynamics of the shallow (depth 1–2 km) hydrothermal system confined to the caldera fill materials.en
dc.language.isoEnglishen
dc.publisher.nameThe American Geophysical Unionen
dc.relation.ispartofJournal of Geophysical Researchen
dc.relation.ispartofseries/116 (2011)en
dc.subjectSimultaneous inversionen
dc.subjectdeformationen
dc.subjectgravity changesen
dc.subjectdeforming calderasen
dc.titleSimultaneous inversion of surface deformation and gravity changes by means of extended bodies with a free geometry: Application to deforming calderasen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumberB10401en
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformationsen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variationsen
dc.subject.INGV04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoringen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoringen
dc.subject.INGV05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementationen
dc.identifier.doi10.1029/2010JB008165, 2011en
dc.relation.referencesAmoruso, A., L. Crescentini, and G. Berrino (2008), Simultaneous inversion of deformation and gravity changes in a horizontally layered half‐space: Evidences for magma intrusion during the 1982–1984 unrest at Campi Flegrei caldera (Italy), Earth Planet. Sci. Lett., 272, 181–188, doi:10.1016/j.epsl.2008.04.040. Avallone, A., A. Zollo, P. Briole, C. Delacourt, and F. Beauducel (1999), Subsidence of Campi Flegrei (Italy) detected by SAR interferometry, Geophys. Res. Lett., 26, 2303–2306, doi:10.1029/1999GL900497. Barberi, F., E. Cassano, P. La Torre, and A. Sbrana (1991), Structural evolution of Campi Flegrei caldera in light of volcanological and geophysical data, J. Volcanol. Geotherm. Res., 48, 33–49, doi:10.1016/0377-0273(91) 90031-T. Battaglia, M., and D. P. Hill (2009), Analytical modeling of gravity changes and crustal deformation at volcanoes: The Long Valley caldera, California, case study, Tectonophysics, 471, 45–57, doi:10.1016/j.tecto. 2008.09.040. Battaglia, M., and D. W. Vasco (2006), The search for magma reservoirs in Long Valley caldera: Single versus distributed sources, Geol. Soc. Spec. Publ., 269, 173–180. Battaglia, M., F. Obrizzo, F. Pingue, and G. De Natale (2006), Evidence for fluid migration as the source of deformation at Campi Flegrei caldera (Italy), Geophys. Res. Lett., 33, L01307, doi:10.1029/2005GL024904. Battaglia, M., J. Gottsmann, D. Carbone, and J. Fernández (2008), 4D volcano gravimetry, Geophysics, 73(6), WA3–WA18, doi:10.1190/1.2977792. Berardino, P., F. Casu, G. Fornaro, R. Lanari, M. Manunta, A. Pepe, and E. Sansosti (2002), A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Trans. Geosci. Remote Sens., 40(11), 2375–2383, doi:10.1109/ TGRS.2002.803792. Berrino, G. (1994), Gravity changes induced by height‐mass variations at the Campi Flegrei caldera, J. Volcanol. Geotherm. Res., 61, 293–309, doi:10.1016/0377-0273(94)90010-8. Berrino, G. (1995), Absolute gravimetry and gradiometry on active volcanoes of southern Italy. Boll. Geofis. Teor. Appl., XXXVII(146), 131–144. Berrino, G. (1998), Detection of vertical ground movements by sea‐level changes in the Neapolitan volcanoes, Tectonophysics, 294, 323–332, doi:10.1016/S0040-1951(98)00109-7. Berrino, G., G. Corrado, G. Luongo, and B. Toro (1984), Ground deformation and gravity changes accompanying the 1982 Pozzuoli Uplift, Bull. Volcanol., 47(2), 187–200, doi:10.1007/BF01961548. Berrino, G., H. Rymer, G. C. Brown, and G. Corrado (1992), Gravityheight correlations for unrest calderas, J. Volcanol. Geotherm. Res., 53, 11–26, doi:10.1016/0377-0273(92)90071-K. Berrino, G., G. Corrado, and U. Riccardi (1998), Sea gravity data in the Gulf of Naples: A contribution to delineating the structural pattern of the Vesuvian area, J. Volcanol. Geotherm. Res., 82, 139–150, doi:10.1016/S0377-0273(97)00061-9. Berrino, G., G. Cerutti, G. Corrado, P. De Maria, and U. Riccardi (1999), Gravity studies on active Italian volcanoes: A comparison between absolute and relative gravimetry, Boll. Geofis. Teor. Appl., 40, 497–510. Berrino, G., G. Corrado, and U. Riccardi (2008), Sea gravity data in the Gulf of Naples: A contribution to delineating the Phlegraean Volcanic District, J. Volcanol. Geotherm. Res., 175, 241–252, doi:10.1016/j. jvolgeores.2008.03.007. Bertete‐Aguirre, H., E. Cherkaev, and M. Oristaglio (2002), Non‐smooth gravity problem with total variation penalization functional, Geophys. J. Int., 149, 499–507, doi:10.1046/j.1365-246X.2002.01664.x. Bianchi, R., A. Corradini, C. Federico, G. Giberti, P. Lanciano, J. P. Pozzi, G. Sartoris, and R. Scandone (1987), Modeling of surface deformation in volcanic areas: The 1970–1972 and 1982–1984 crises at Campi Flegrei, Italy, J. Volcanol. Geotherm. Res., 92(14), 139–150. Bonafede, M., and C. Ferrari (2009), Analytical models of deformation and residual gravity changes due to a Mogi source in a viscoelastic medium, Tectonophysics, 471, 4–13, doi:10.1016/j.tecto.2008.10.006. Bonafede, M., and M. Mazzanti (1998), Modeling gravity variations consistent with ground deformation in the Campi Flegrei caldera (Italy), J. Volcanol. Geotherm. Res., 81, 137–157, doi:10.1016/ S0377-0273(97)00071-1. Bonasia, V., F. Pingue, and R. Scarpa (1984), A fluid‐filled fracture as possible mechanism of ground deformation at Phlegraean Fields, Italy, Bull. Volcanol., 47(2), 313–320, doi:10.1007/BF01961562. Camacho, A. G., F. G. Montesinos, and R. Vieira (2000), A 3‐D gravity inversion by means of growing bodies, Geophysics, 65(1), 95–101, doi:10.1190/1.1444729. Camacho, A. G., F. G. Montesinos, and R. Vieira (2002), A 3‐D gravity inversion tool based on exploration of model possibilities, Comput. Geosci., 28, 191–204, doi:10.1016/S0098-3004(01)00039-5. Camacho, A. G., J. C. Nunes, E. Ortiz, Z. França, and R. Vieira (2007), Gravimetric determination of an intrusive complex under the Island of Faial (Azores): Some methodological improvements, Geophys. J. Int., 171, 478–494, doi:10.1111/j.1365-246X.2007.03539.x. Cassano, E., and P. La Torre (1987), Geophysics, in Phlegrean Fields, Quad. Ric. Sci. CNR, edited by R. Santacroce, pp. 103–133. Casu, F., M. Manzo, and R. Lanari (2006), A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data, Remote Sens. Environ., 102, 195–210, doi:10.1016/j. rse.2006.01.023. Charco, M., J. Fernández, F. Luzón, and J. B. Rundle (2006), On the relative importance of self‐gravitation and elasticity in modeling volcanic ground deformation and gravity changes, J. Geophys. Res., 111, B03404, doi:10.1029/2005JB003754. Charco, M., J. Fernández, F. Luzón, K. F. Tiampo, and J. B. Rundle (2007), Some insights into topographic, elastic a self‐gravitation interaction in modelling ground deformation and gravity changes in active volcanic areas, Pure Appl. Geophys., 164, 865–878, doi:10.1007/ s00024-004-0190-y. Corrado, G., I. Guerra, A. Lo Bascio, G. Luongo, and R. Rampoldi (1976), Inflation and microearthquake activity of Phlegraean Fields, Italy, Bull. Volcanol., 40(3), 1–20. Currenti, G., C. Del Negro, and G. Ganci (2007), Modelling of ground deformation and gravity fields using finite element method: An application to Etna volcano, Geophys. J. Int., 169, 775–786, doi:10.1111/j.1365- 246X.2007.03380.x. Davis, R. O., and A. P. S. Selvadurai (1996), Elasticity and Geomechanics, 201 pp., Cambridge Univ. Press, Cambridge, U. K. Di Girolamo, P., M. Ghiara, L. Lirer, R. Munno, G. Rolandi, and D. Stanzione (1984), Vulcanologia e Petrologia dei Campi Flegrei, Boll. Soc. Geol. Ital., 103, 349–413. Dvorak, J., and G. Berrino (1991), Recent ground movement and vertical ground movement in Campi Flegrei caldera, southern Italy: Comparison of precursory events to the A.D. 1538 eruption of Monte Nuovo and of activity since 1968, J. Volcanol. Geotherm. Res., 96, 2309–2323. Eggers, A. (1987), Residual gravity changes and eruption magnitudes, J. Volcanol. Geotherm. Res., 33, 201–216, doi:10.1016/0377-0273(87) 90062-X. Farquharson, C. G., and D. W. Oldenbourg (1998), Non‐linear inversion using general measures of data misfit and model structure, Geophys. J. Int., 134, 213–227, doi:10.1046/j.1365-246x.1998.00555.x. Fedi, M., C. Nunziata, and A. Rapolla (1991), The Campania‐Campi Flegrei area: A contribution to discern the best structural model from gravity interpretation, J. Volcanol. Geotherm. Res., 48, 51–59, doi:10.1016/ 0377-0273(91)90032-U. Fernández, J., and J. Rundle (1994a), Gravity changes and deformation due to a magmatic intrusion in a two‐layered crustal model, J. Geophys. Res., 99, 2737–2746, doi:10.1029/93JB02449. Fernández, J., and J. Rundle (1994b), FORTRAN program to compute displacement, potential and gravity changes due to a magma intrusion in a multilayered Earth model, Comput. Geosci., 20, 461–510, doi:10.1016/ 0098-3004(94)90079-5. Fernández, J., K. F. Tiampo, and J. B. Rundle (2001), Viscoelastic displacement and gravity changes due to point magmatic intrusion in a gravitational layered solid earth, Geophys. J. Int., 146, 155–170, doi:10.1046/j.0956-540x.2001.01450.x. Florio, G., M. Fedi, F. Cella, and A. Rapolla (1999), The Campanian Plain and Phlegrean Fields: Structural setting from potential field data, J. Volcanol. Geotherm. Res., 91, 361–379, doi:10.1016/S0377-0273(99) 00044-X. Gabriel, A. K., R. M. Goldstein, and H. A. Zebker (1989), Mapping small elevation changes over large areas: Differential radar interferometry, J. Geophys. Res., 94, 9183–9191, doi:10.1029/JB094iB07p09183. Gottsmann, J., and M. Battaglia (2008), Deciphering causes of unrest at explosive collapse calderas: Recent advances and future challenges of joint time‐lapse gravimetric and ground deformation studies, in Caldera Volcanism. Analysis, Modeling and Response, edited by J. Gottsmann and J. Marti, pp. 417–446, Elsevier, New York, doi:10.1016/S1871- 644X(07)00012-5. Gottsmann, J., G. Berrino, H. Rymer, and G. William‐Jones (2003), Hazard assessment during caldera unrest at the Campi Flegrei, Italy: A contribution from gravity‐height gradients, Earth Planet. Sci. Lett., 211, 295–309, doi:10.1016/S0012-821X(03)00225-5. Gottsmann, J., H. Rymer, and G. Berrino (2006a), Unrest at the Campi Flegrei caldera (Italy): A critical evaluation of source parameters from geodetic data inversion, J. Volcanol. Geotherm. Res., 150, 132–145, doi:10.1016/j.jvolgeores.2005.07.002. Gottsmann, J., A. Folch, and H. Rymer (2006b), Unrest at Campi Flegrei: A contribution to the magmatic versus hydrothermal debate from inverse and finite element modeling, J. Geophys. Res., 111, B07203, doi:10.1029/2005JB003745. Gottsmann, J., A. G. Camacho, K. F. Tiampo, and J. Fernández (2006c), Spatiotemporal variations in vertical gravity gradients at the Campi Fle-grei caldera (Italy): A case for source multiplicity during unrest?, Geophys. J. Int., 167, 1089–1096, doi:10.1111/j.1365-246X.2006.03157.x. Gottsmann, J., A. G. Camacho, J. Marti, L. Wooller, J. Fernández, A. Garcia, and H. Rymer (2008), Shallow structure beneath the Central Volcanic Complex of Tenerife from new gravity data: Implications for its evolution and recent reactivation, Phys. Earth Planet. Inter., 168, 212–230, doi:10.1016/j.pepi.2008.06.020. Lanari, R., P. Berardino, S. Borgström, C. Del Gaudio, P. De Martino, G. Fornaro, S. Guarino, G. P. Ricciardi, E. Sansosti, and P. Lundgren (2004), The use of IFSAR and classical geodetic techniques for caldera unrest episodes: Application to the Campi Flegrei uplift event of 2000, J. Volcanol. Geotherm. Res., 133, 247–260, doi:10.1016/ S0377-0273(03)00401-3. Lanari, R., F. Casu, M. Manzo, G. Zeni, P. Berardino, M. Manunta, and A. Pepe (2007), An overview of the small baseline subset algorithm: A DInSAR technique for surface deformation analysis, Pure Appl. Geophys., 164, 637–661, doi:10.1007/s00024-007-0192-9. Lirer, L., G. Luongo, and R. Scandone (1987), On the volcanological evolution of Campi Flegrei, Eos Trans. AGU, 68, 226. Lundgren, P., S. Usai, E. Sansosti, R. Lanari, M. Tesauro, G. Fornaro, and P. Berardino (2001), Modeling surface deformation observed with synthetic aperture radar interferometry at Campi Flegrei caldera, J. Geophys. Res., 106, 19,355–19,366, doi:10.1029/2001JB000194. Manconi, A., T. R. Walter, M. Manzo, G. Zeni, P. Tizzani, E. Sansosti, and R. Lanari (2010), On the effects of 3‐D mechanical heterogeneities at Campi Flegrei caldera, southern Italy, J. Geophys. Res., 115, B08405, doi:10.1029/2009JB007099. Masterlark, T. (2007), Magma intrusion and deformation predictions: Sensitivities to the Mogi assumptions, J. Geophys. Res., 112, B06419, doi:10.1029/2006JB004860. Nunziata, C., and A. Rapolla (1981), Interpretation of gravity and magnetic data in the Phlegrean Fields geothermal area, Naples, Italy, J. Volcanol. Geotherm. Res., 10(1–3), 209–225, doi:10.1016/0377-0273(81)90063-9. Orsi, G., M. D’Antonio, S. de Vita, and G. Gallo (1992), The neapolitan yellow tuff, a large magnitude trachytic phreatoplinian eruption: Eruptive dynamics, magma withdrawal and caldera collapse, J. Volcanol. Geotherm. Res., 53, 275–287, doi:10.1016/0377-0273(92)90086-S. Orsi, G., S. de Vita, and M. di Vito (1996), The restless, resurgent Campi Flegrei nested caldera (Italy): Constrains on its evolution and configuration, J. Volcanol. Geotherm. Res., 74, 179–214, doi:10.1016/S0377-0273 (96)00063-7. Orsi, G., L. Civetta, C. Del Gaudio, S. De Vita, M. A. Di Vito, R. Isaia, S. M. Petrazzuoli, G. P. Ricciardi, and C. Ricco (1999), Short‐term ground deformation and seismicity in the resurgent Campi Flegrei caldera (Italy): An example of active block‐resurgence in a densely populated area, J. Volcanol. Geotherm. Res., 91, 415–451, doi:10.1016/ S0377-0273(99)00050-5. Rapolla, A., M. Fedi, and M. G. Fiume (1989), Crustal structure of Ischia‐Plegrean geothermal fields, near Naples, Italy, from gravity and aeromagnetic data, Geophys. J. Int., 97, 409–419, doi:10.1111/ j.1365-246X.1989.tb00511.x. Rosi, M., and A. Sbrana (Eds.) (1987), Phlegrean fields, Quad. Ric. Sci., 114(9), 175 pp. Rundle, J. B. (1978), Gravity changes and the Palmdale uplift, Geophys. Res. Lett., 5, 41–44, doi:10.1029/GL005i001p00041. Rundle, J. B. (1980), Static elastic‐gravitational deformation of a layered half space by point couple sources, J. Geophys. Res., 85, 5355–5363, doi:10.1029/JB085iB10p05355. Rundle, J. B. (1982), Deformation, gravity, and potential changes due to volcanic loading in the crust, J. Geophys. Res., 87, 10,729–10,744, doi:10.1029/JB087iB13p10729. Saleh, B. (2002), Underground deformation measurements using new quarts instruments, paper presented at the 95th Annual CIG Geomatics Conference, Can. Inst. of Geomatics, Ottawa, Ont., Canada, 8–23 July. Scandone, R., F. Bellucci, L. Lirer, and G. Rolandi (1991), The structure of the Campanian Plain and the activity of the neapolitan volcanoes (Italy), J. Volcanol. Geotherm. Res., 48, 1–31, doi:10.1016/0377-0273(91) 90030-4. Talwani, P., and S. Acree (1984), Pore pressure diffusion and the mechanism of reservoir‐induced seismicity, Pure Appl. Geophys., 122(6), 947–965, doi:10.1007/BF00876395. Tarantola, A. (1987), Inverse Problem Theory, 613 pp., Elsevier, Amsterdam. Tiede, C., K. Tiampo, J. Fernández, and C. Gerstenecker (2005), Deeper understanding of non‐linear geodetic data inversion using a quantitative sensitivity analysis, Nonlinear Processes Geophys., 12, 373–379, doi:10.5194/npg-12-373-2005. Todesco, M., and G. Berrino (2005), Modeling hydrothermal fluid circulation and gravity signals at the Phlegraean Fields caldera, Earth Planet. Sci. Lett., 240, 328–338, doi:10.1016/j.epsl.2005.09.016. Tramelli, A., E. Del Pezzo, F. Bianco, and E. Boschi (2006), 3D scattering image for the Campi Flegrei caldera (Southern Italy). New hints on the position of the old caldera rim, Phys. Earth Planet. Inter., 155, 269–280, doi:10.1016/j.pepi.2005.12.009. Usai, S. (2003), A least‐squares database approach for SAR interferometric data, IEEE Trans. Geosci. Remote Sens., 41(4), 753–760, doi:10.1109/ TGRS.2003.810675. Vasco, D. W., C. M. Puskas, R. B. Smith, and C. M. Meertens (2007), Crustal deformation and source models of the Yellowstone volcanic field from geodetic data, J. Geophys. Res., 112, B07402, doi:10.1029/ 2006JB004641. Walsh, J. B., and J. R. Rice (1979), Local changes in gravity resulting from deformation, J. Geophys. Res. , 84, 165–170, doi:10.1029/ JB084iB01p00165. Williams, C. A., and G. Wadge (1998), The effects of topography on magma chamber deformation models: Application to Mt. Etna and radar interferometry, Geophys. Res. Lett., 25, 1549–1552, doi:10.1029/ 98GL01136.en
dc.description.obiettivoSpecifico2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attiveen
dc.description.journalTypeJCR Journalen
dc.description.fulltextreserveden
dc.contributor.authorCamacho, A. G.en
dc.contributor.authorGonzález, P. J.en
dc.contributor.authorFernández, J.en
dc.contributor.authorBerrino, G.en
dc.contributor.departmentInstituto de Astronomía y Geodesia, CSIC‐UCM, Madrid, Spain.en
dc.contributor.departmentDepartment of Earth Sciences, University of Western Ontario, London, Ontario, Canadaen
dc.contributor.departmentInstituto de Astronomía y Geodesia, CSIC‐UCM, Madrid, Spain.en
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptInstituto de Astronomía y Geodesia, CSIC‐UCM, Madrid, Spain.-
crisitem.author.deptInstituto de Geocencias (IGEO) (CSIC, UCM)-
crisitem.author.orcid0000-0002-4703-2435-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent05. General-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
CamGon - 11.pdf1.69 MBAdobe PDF
Show simple item record

Page view(s) 20

327
checked on Apr 24, 2024

Download(s)

49
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric