Please use this identifier to cite or link to this item: http://hdl.handle.net/2122/714
DC FieldValueLanguage
dc.contributor.authorallLewicki, J. L.; Lawrence Berkeley National Laboratory,Earth Sciences Divisionen
dc.contributor.authorallBergfeld, D.; U.S. Geological Surveyen
dc.contributor.authorallCardellini, C.; Università di Perugia, Dipartimento di Scienze della Terraen
dc.contributor.authorallChiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallGranieri, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.authorallVarley, N.; Universidad de Colima, Facultad de Cienciasen
dc.contributor.authorallWerner, C.; Institute of Geological and Nuclear Sciences, New Zealanden
dc.date.accessioned2006-02-14T11:20:42Zen
dc.date.available2006-02-14T11:20:42Zen
dc.date.issued2005en
dc.identifier.urihttp://hdl.handle.net/2122/714en
dc.description.abstractWe present a comparative study of soil CO2 flux ( ) measured by five groups (Groups 1–5) at the IAVCEI-CCVG Eighth Workshop on Volcanic Gases on Masaya volcano, Nicaragua. Groups 1–5 measured using the accumulation chamber method at 5-m spacing within a 900 m2 grid during a morning (AM) period. These measurements were repeated by Groups 1–3 during an afternoon (PM) period. Measured ranged from 218 to 14,719 g m–2 day–1. The variability of the five measurements made at each grid point ranged from ±5 to 167%. However, the arithmetic means of fluxes measured over the entire grid and associated total CO2 emission rate estimates varied between groups by only ±22%. All three groups that made PM measurements reported an 8–19% increase in total emissions over the AM results. Based on a comparison of measurements made during AM and PM times, we argue that this change is due in large part to natural temporal variability of gas flow, rather than to measurement error. In order to estimate the mean and associated CO2 emission rate of one data set and to map the spatial distribution, we compared six geostatistical methods: arithmetic and minimum variance unbiased estimator means of uninterpolated data, and arithmetic means of data interpolated by the multiquadric radial basis function, ordinary kriging, multi-Gaussian kriging, and sequential Gaussian simulation methods. While the total CO2 emission rates estimated using the different techniques only varied by ±4.4%, the maps showed important differences. We suggest that the sequential Gaussian simulation method yields the most realistic representation of the spatial distribution of , but a variety of geostatistical methods are appropriate to estimate the total CO2 emission rate from a study area, which is a primary goal in volcano monitoring research.en
dc.format.extent478 bytesen
dc.format.extent142437 bytesen
dc.format.mimetypetext/htmlen
dc.format.mimetypetext/htmlen
dc.language.isoEnglishen
dc.publisher.nameSpringer-Verlagen
dc.relation.ispartofBulletin of Volcanologyen
dc.subjectCarbon dioxideen
dc.subjectSoil gasen
dc.subjectAccumulation chamber methoden
dc.subjectGeostatisticsen
dc.subjectMasaya volcanoen
dc.subjectVolcano monitoringen
dc.subjectEmission ratesen
dc.titleComparative soil CO2 flux measurements and geostatistical estimation methods on Masaya volcano, Nicaraguaen
dc.typearticleen
dc.description.statusPublisheden
dc.type.QualityControlPeer-revieweden
dc.description.pagenumber1-30en
dc.identifier.URLhttp://www.springerlink.comen
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical explorationen
dc.subject.INGV04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniquesen
dc.subject.INGV04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniquesen
dc.identifier.doi10.1007/s00445-005-0423-9en
dc.relation.referencesBergfeld D, Goff F, Janik CJ (2001) Elevated carbon dioxide flux at the Dixie Valley geothermal field, Nevada; relations between surface phenomena and the geothermal reservoir. Chem Geol 177:43–66 Burton M, Oppenheimer C, Horrocks L, Francis P (2000) Remote sensing of CO2 and H2O emission rates from Masaya volcano, Nicaragua. Geology 28:915–918 Carapezza ML, Granieri D (2004) CO2 soil flux at Vulcano (Italy): comparison of active and passive methods. Appl Geochem 19:73–88 Cardellini C, Chiodini G, Frondini F (2003) Application of stochastic simulation to CO2 flux from soil: mapping and quantification of gas release. J Geophys Res 108:2425 Chiodini G, Cioni GR, Guidi M, Raco B, Marini L (1998) Soil CO2 flux measurements in volcanic and geothermal areas. Appl Geochem 13:543–552 Chiodini G, Cardellini C, Frondini F, Granieri D, Marini L, Ventura G (2001) CO2 degassing and energy release at Solfatara Volcano, Campi Flegrei, Italy. J Geophys Res 106:16213–16221 Delmelle P, Stix J, Baxter P, Garcia-Alvarez J, Barquero J (2002) Atmospheric dispersion, environmental effects and potential health hazard associated with the low-altitude gas plume of Masaya volcano, Nicaragua. Bull Volcanol 64:423–434 Delmelle P et al (1999) Origin, effects of Masaya volcanos continued unrest probed in Nicaragua. Eos (Transactions, American Geophysical Union) 80:575,581 Deutsch CV, Journel AG (1998) GSLIB, geostatistical software library and users guide. Oxford Univ Press, New York Duffell H, Oppenheimer C, Burton M (2001) Volcanic gas emission rates measured by solar occulation spectroscopy. Geophys Res Lett 28:3131–3134 Evans WC, Sorey ML, Kennedy BM, Stonestrom DA, Rogie JD, Shuster DL (2001) High CO2 emissions through porous media: transport mechanisms and implications for flux measurement and fractionation. Chem Geol 177:15–29 Farrar CD, Sorey ML, Evans WC, Howle JF, Kerr BD, Kennedy BM, King Y, Southon JR (1995) Forest-killing diffuse CO2 emission at Mammoth Mountain as a sign of magmatic unrest. Nature 376:675–678 Finney DJ (1941) On the distribution of a variate whose logorithm is normally distributed. J Royal Statis Soc Suppl 7:144–161 Fornberg B, Driscoll TA, Wright G, Charles R (2002) Observations on the behavior of radial basis function approximations near boundaries. Comp Math Appl 43:473–490 Gerlach T, Doukas M, McGee K, Kessler R (2001) Soil efflux and total emission rates of magmatic CO2 at the Horseshoe Lake tree kill, Mammoth Mountain, California. Chem Geol 177:101–116 Giammanco S, Gurrieri S, Valenza M (1997) Soil CO2 degassing along tectonic structures on Mount Etna (Sicily); the Pernicana fault. Appl Geochem 12:429–436 Gilbert RO (1987) Statistical methods for environmental pollution monitoring. Van Nostrand Reinhold, New York Goovaerts P (2001) Geostatistical modeling of uncertainty in soil science. Geoderma 103:3–26 Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76:1905–1915 Horrocks L, Burton M, Francis P (1999) Stable gas plume composition measured by OP-FTIR spectroscopy at Masaya Volcano, Nicaragua, 1998–1999. Geophys Res Lett 26:3497–3500 Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, New York Lewicki JL, Connor C, St-Amand K, Stix J, Spinner W (2003a) Self- potential, soil CO2 flux, and temperature on Masaya volcano, Nicaragua. Geophys Res Lett 30:1817 Lewicki JL, Evans WC, Hilley GE, Sorey ML, Rogie JD, Brantley SL (2003b) Shallow soil CO2 flow along the San Andreas and Calaveras faults, CA. J Geophys Res 108:2187 Pérez N, Salazar J, Saballos A, Álvarez J, Segura F, Hernández P, Notsu K (2000) Diffuse degassing of CO2 from Masaya caldera, Central America. Eos Trans AGU, Fall Meet Suppl Rogie JD, Kerrick DM, Sorey ML, Chiodini G, Galloway DL (2001) Dynamics of carbon dioxide emission at Mammoth Mountain, California. Earth Planet Sci Lett 188:535–541 Saito H, Goovaerts P (2000) Geostatistical interpolation of positively skewed and censored data in a dioxin-contaminated site. Environ Sci Technol 34:4228–4235 Salazar JM, Hernández PA, Pérez NM, Melián G, Alvarez J, Segura F, Notsu K (2001) Diffuse emission of carbon dioxide from Cerro Negro volcano, Nicaragua, Central America. Geophys Res Lett 28:4275–4278 Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611 Sichel HS (1952) New methods in the statistical evaluation of mine sampling. London Inst Mining Met Trans 61:261–288 St-Amand K (1999) The distribution and origin of radon, CO2, and SO2 gases and multifractal behavior of SO2 at Masaya volcano, Nicaragua. Masters thesis, Université de Montréal Stoiber RE, Williams SN, Huebert BJ (1986) Sulfur and halogen gases at Masaya caldera complex, Nicaragua: total flux and variations with time. J Geophys Res 91:12215–12231 Wardell LJ, Delmelle P, Fischer T, Lewicki JL, Malavassi E, Stix J, Strauch W (2003) Volcanic gas workshop fosters international focus on state of the art measurement techniques. Eos (Transactions, American Geophysical Union) 84(47):519 Watson DF (1992) Contouring: a guide to the display and analysis of spatial data. Pergamon, New York Welles JM, Demetriades-Shah TH, McDermitt DK (2001) Considerations for measuring ground CO2 effluxes with chambers. Chem Geol 177:3–13 Werner CA, Brantley SL, Boomer K (2000) CO2 emissions related to the Yellowstone volcanic system 2: statistical sampling, total degassing, and transport mechanisms. J Geophys Res 105:10831–10846en
dc.description.fulltextpartially_openen
dc.contributor.authorLewicki, J. L.en
dc.contributor.authorBergfeld, D.en
dc.contributor.authorCardellini, C.en
dc.contributor.authorChiodini, G.en
dc.contributor.authorGranieri, D.en
dc.contributor.authorVarley, N.en
dc.contributor.authorWerner, C.en
dc.contributor.departmentLawrence Berkeley National Laboratory,Earth Sciences Divisionen
dc.contributor.departmentU.S. Geological Surveyen
dc.contributor.departmentUniversità di Perugia, Dipartimento di Scienze della Terraen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentIstituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italiaen
dc.contributor.departmentInstitute of Geological and Nuclear Sciences, New Zealanden
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.deptLawrence Berkeley National Laboratory,Earth Sciences Division-
crisitem.author.deptUS Geological Survey, Menlo Park, CA, USA-
crisitem.author.deptDipartimento di fisica e Geologia di Perugia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia-
crisitem.author.deptIstituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia-
crisitem.author.orcid0000-0002-0628-8055-
crisitem.author.orcid0000-0003-2831-723X-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.author.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.classification.parent04. Solid Earth-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
crisitem.department.parentorgIstituto Nazionale di Geofisica e Vulcanologia-
Appears in Collections:Article published / in press
Files in This Item:
File Description SizeFormat Existing users please Login
Granieri.htm139.1 kBHTML
springerlink.htm478 BHTMLView/Open
Show simple item record

WEB OF SCIENCETM
Citations

60
checked on Feb 10, 2021

Page view(s) 50

214
checked on Apr 17, 2024

Download(s)

104
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric